Keyword

Point Resolution

419 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
From 1 - 10 / 419
  • Categories    

    The composition of many eastern Australian woodland and forest bird assemblages is controlled by a single, hyper-aggresive native bird, the noisy miner <em>Manorina melanocephala</em>. The "Avifaunal disarry from a single despotic species" working group harnessed diverse existing datasets and used them to develop and test models of noisy miner occupancy and impacts. Two datasets are published based on the analysis and synthesis.

  • Categories    

    The ACEAS working group has developed a framework to evaluate the extent to which fire regimes are driven by climate and other environmental variables, and whether these fire and environment relationships concord with: (a) predictions of the group of conceptual models recently developed; and (b) predictions of process-based models. The dataset provides a distribution of major fire regimes niches throughout Australia ordered according to decreasing annual net primary productivity. The dataset published is the distribution of major fire regimes niches throughout Australia.

  • Categories    

    The project brought together a group of Australian researchers and managers with a broad range of expertise to identify current and emerging economies (‘drivers’) affecting regional agricultural landscapes and to suggest beneficial transformational changes for successful adaptation. A key challenge in these landscapes is altering how we use the land for ongoing, viable production while increasing native biodiversity. The group:<ul style="list-style-type: disc;"> <li>identified the major historical influences on Australian land use and the current social and economic drivers that are likely to increase in the future</li> <li>assessed the condition of five agro-climatic regions (adapted from Williams et al., 2002 and Hobbs and McIntyre, 2005) using a Delphi method. A small (4-person) expert panel scored the impact of historical and future scenarios on ten sustainability indicators (biodiversity, water, soil, social capital, built capital, food/fibre, carbon, energy, minerals and cultural). Five regions were chosen: Southern Mediterranean, Northern tropical, Central arid, North-east subtropical, and South-east temperate. This was an iterative process whereby scores were revisited until internal consistency between regions, scenarios, and indicators was achieved</li> <li>made projections of regional condition under the four global Representative Concentration Pathways (RCPs) based on van Vuuren et al. (2011)</li> <li>developed recommendations about land use and management, institutional and policy arrangements and social processes that will assist adaptation towards a values-rich vision of Australia in 2100.</li></ul>

  • Categories    

    The data set contains information on the soil water content at various depths in the Samford Ecological Research Facility (SERF), Samford Peri-Urban Site. Information on soil water content is provided from two sensors, i.e., 1) Sentek Solo, for high frequency sampling and 2) Sentek Diviner, for coarser resolution sampling.

  • Categories    

    Invertebrates dominate the animal world in terms of abundance, diversity and biomass and play critical roles in maintaining ecosystem function. Despite their obvious importance, disproportionate research attention remains focused on vertebrates, with knowledge and understanding of invertebrate ecology still lacking. Due to their inherent advantages, usage of camera traps in ecology has risen dramatically over the last three decades, especially for research on mammals. However, few studies have used cameras to reliably detect fauna such as invertebrates or used cameras to examine specific aspects of invertebrate ecology. Twenty-four Reconyx PC800 HyperfireTM cameras were deployed on 7th July 2016 at Main Camp and left until 12th October 2016 (98 days, or 2352 h of deployment) in the Simpson Desert, south-western Queensland, capturing 372 time-lapse images of Wolf spiders (Family Lycosidae). Images were tagged with camera location, position, angle, camera ID and presence of lycosids. Additionally, spotlight surveys were conducted in October 2016 every hour between dusk (19:30 h) and dawn (05:30 h) over three nights with a total of 352 lycosids observed. This data set was used to determine whether: 1) camera traps provide a viable method for detecting wolf spiders, 2) diel activity patterns of the spiders can be ascertained, and 3) patterns in spider activity vary with environmental conditions, specifically between burned and unburned habitats and the crests and bases of sand dunes. This data presents a useful example of the utility of cameras as a tool for determining the diel activity patterns and habitat use of larger arthropods such as wolf spiders. Please note: Camera trap images are not provided and only species occurrence records are included. Also, image files were renamed after collection, resulting in a number versus time conflict. However, dates and times of sightings provided are correct.

  • Categories    

    This dataset includes volumetric soil water content measured across soil pits in the lowland rainforest of Cape Tribulation. Data were acquired using time-domain reflectometry (TDR) probes recording at soil surface (10 cm) and at depths (50, 100 and 150 cm) at 4 control points - PB1 and PB8 are in the SW quadrant of the crane plot, PB2 and PB5 are in the NW quadrant of the crane plot.

  • Categories    

    <p>Digital Cover Photography (DCP) upward-looking images are collected up to three times per year to capture vegetation cover at Samford Peri-Urban SuperSite. These images can be used to estimate Leaf Area Index (LAI), Crown Cover or Foliage Projective Cover (FPC). </p><p> The Samford Peri-Urban SuperSite was established in 2010 in remnant fringe eucalypt forest, near urban development in the Samford Valley. The upper storey is dominated by <em>Corymbia intermedia</em>, <em>Eucalyptus siderophloia</em> and <em>Lophostemon suaveolens</em>. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/samford-peri-urban-supersite/ . </p><p> Other images collected at the site include photopoints, phenocam time-lapse images taken from fixed overstorey cameras, panoramic landscape and ancillary images of fauna and flora.</p>

  • Categories    

    The dataset includes three csv files: [1] effects of pre-inhabitation and viruses on the feeding behavior of <i>Rhopalosiphum padi</i> and <i>R. maidis</i> (min). [2] effects of pre-inhabitation and viruses on the fecundity of<i> R. padi</i> and <i>R. maidis</i> (total offspring in laboratory and field). [3] effect of pre-inhabitation and viruses on the host plant nutrient content (amino acids, total sterols, and simple sugars-mg/g). These data might be used by researchers studying positive interactions, effects of viruses on host plants and vectors, phytochemistry of the wheat plant, and feeding behavior of phloem-feeders.

  • Categories    

    This terrestrial LiDAR dataset captures detailed vegetation structural information at the Robson Creek Tropical Rainforest SuperSite within Danbulla National Park, North Queensland, Australia. The purpose of this data is to enhance understanding of vegetation dynamics and ecosystem function in the region. The dataset is part of a broader collection of Terrestrial LiDAR data acquired from all TERN SuperSites, aimed at achieving a standardized and highly detailed capture of 3D vegetation structure across Australia.

  • Categories    

    This terrestrial LiDAR dataset captures detailed vegetation structural information at the Calperum Mallee SuperSite on Calperum Station near Renmark, South Australia. The purpose of this data is to enhance understanding of vegetation dynamics and ecosystem function in the region. The dataset is part of a broader collection of Terrestrial LiDAR data acquired from all TERN SuperSites, aimed at achieving a standardised and highly detailed capture of 3D vegetation structure across Australia.