From 1 - 10 / 13
  • Categories    

    <p>Fixed cameras installed at the plots (core 1 hectare vegetation plot and Ridgefield) at TERN Boyagin Wandoo Woodland SuperSite provide a time series of fine scale data as a long-term record of vegetation structure and condition. This dense time series of phenocam images provides data for analysis of ecological responses to climate variability, and when consolidated across the entire terrestrial ecosystem research network, supports calibration and validation of satellite-derived remote sensing data, ensuring delivery of higher quality results for broader scale environmental monitoring products.</p> <p>Images are captured half hourly during daylight hours. Images and data products, including timeseries of the Green Chromatic Coordinate (Gcc) for a region-of-interest (ROI) that delineates an area of specific vegetation type, are made available on an almost real-time basis. </p> <p>The Boyagin Wandoo Woodland SuperSite was established in 2017 at the Boyagin Nature Reserve with research plots located in Wandoo woodland (<em>Eucalypt sp.</em>). The core 1 ha plot is located in a dense Eucalypt woodland, while Ridgefield subsite is located within an area of dryland agriculture. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/boyagin-wandoo-woodland-supersite/ .</p> <p> Other images collected at the site include digital cover and hemispherical photography (DCP and DHP) and ancillary images of fauna and flora.</p>

  • Categories    

    <p>Fixed cameras installed at the Great Western Woodlands SuperSite provide a time series of fine scale data as a long-term record of vegetation structure and condition. This dense time series of phenocam images provides data for analysis of ecological responses to climate variability, and when consolidated across the entire terrestrial ecosystem research network, supports calibration and validation of satellite-derived remote sensing data, ensuring delivery of higher quality results for broader scale environmental monitoring products. </p> <p>Images are captured half hourly during daylight hours. Images and data products, including timeseries of the Green Chromatic Coordinate (Gcc) for a region-of-interest (ROI) that delineates an area of specific vegetation type, are made available on an almost real-time basis. </p><p> <p>The Great Western Woodlands SuperSite was established in 2012 in the Credo Conservation Reserve. The site is in semi-arid woodland and was operated as a pastoral lease from 1907 to 2007. The core 1 ha plot is characterised by <em>Eucalyptus salmonophloia</em> (salmon gum), with <em>Eucalyptus salubris</em> and <em>Eucalyptus clelandii</em> dominating other research plots. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/great-western-woodlands-supersite/. </p><p>Other images collected at the site include photopoints, digital cover photography (DCP), panoramic landscape, and ancillary images of fauna and flora. </p>

  • Categories    

    <p>Fixed cameras installed at the Alice Mulga SuperSite provide a time series of fine scale data as a long-term record of vegetation structure and condition. This dense time series of phenocam images provides data for analysis of ecological responses to climate variability, and when consolidated across the entire terrestrial ecosystem research network, supports calibration and validation of satellite-derived remote sensing data, ensuring delivery of higher quality results for broader scale environmental monitoring products. </p> <p>Images are captured half hourly during daylight hours. Images and data products, including timeseries of the Green Chromatic Coordinate (Gcc) for a region-of-interest (ROI) that delineates an area of specific vegetation type, are made available on an almost real-time basis. </p><p> The Alice Mulga SuperSite was established in 2010 at Pine Hill Cattle Station with research plots located in low open woodland Mulga (<em>Acacia aneura</em>) and non-Acacia, hummock grassland, and river red gum forest. The core 1 ha plot is located in a dense Mulga woodland (cover 70–80%), while the Ti Tree East subsite is located in a mosaic of hummock grassland/Corymbia savanna with patches of Mulga/tussock grass. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/alice-mulga-supersite/ . </p><p> Other images collected at the site include photopoints, digital cover photography (DCP), panoramic landscape and ancillary images of fauna and flora.</p>

  • Categories    

    <p>Fixed cameras installed at the Mitchell Grass Rangeland Site provide a time series of fine scale data as a long-term record of vegetation structure and condition. This dense time series of phenocam images provides data for analysis of ecological responses to climate variability, and when consolidated across the entire terrestrial ecosystem research network, supports calibration and validation of satellite-derived remote sensing data, ensuring delivery of higher quality results for broader scale environmental monitoring products.</p> <p>Images are captured half hourly during daylight hours. Images and data products, including timeseries of the Green Chromatic Coordinate (Gcc) for a region-of-interest (ROI) that delineates an area of specific vegetation type, are made available on an almost real-time basis. </p> <p>Mitchell Grass Rangeland Site is located at Rosebank Station, approximately 11&nbsp;km south-east of Longreach, Queensland. The site is characterised by black vertosol soil and arid tussock grassland with a variety of grass species including <em>Astrebla lappacea</em> and <em>Astrebla squarrosa</em> that supports sheep and beef cattle grazing. For additional site information, see <a href="https://www.tern.org.au/tern-ecosystem-processes/mitchell-grass-rangeland-supersite/">Mitchell Grass Rangeland SuperSite</a> .</p> <p>Other images collected at the site include photopoint and ancillary images of fauna and flora.</p>

  • Categories    

    <p>Fixed cameras installed at the Warra Tall Eucalypt SuperSite provide a time series of fine scale data as a long-term record of vegetation structure and condition. This dense time series of phenocam images provides data for analysis of ecological responses to climate variability, and when consolidated across the entire terrestrial ecosystem research network, supports calibration and validation of satellite-derived remote sensing data, ensuring delivery of higher quality results for broader scale environmental monitoring products. </p> <p>Images are captured hourly during daylight hours. Images and data products, including timeseries of the Green Chromatic Coordinate (Gcc) for a region-of-interest (ROI) that delineates an area of specific vegetation type, are made available on a regular basis. </p><p> The Warra Tall Eucalypt SuperSite was established in 2012 and is located in a stand of tall, mixed-aged <em>Eucalyptus obliqua</em> forest (1.5, 125 and &gt;250 years-old) with a rainforest / wet sclerophyll understorey and a dense man-fern (<em>Dicksonia antarctica</em>) ground-layer. The site experienced a fire in January 2019, which consumed the ground layer and killed a high proportion of the understorey trees but stimulated dense seedling regeneration. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/warra-tall-eucalypt-supersite/. </p><p>Other images collected at the site include photopoints, digital cover photography (DCP), panoramic landscape, and ancillary images of fauna and flora. </p>

  • Categories    

    <p>Fixed cameras installed at TERN Robson Creek Rainforest SuperSite provide a time series of fine scale data as a long-term record of vegetation structure and condition. This dense time series of phenocam images provides data for analysis of ecological responses to climate variability, and when consolidated across the entire terrestrial ecosystem research network, supports calibration and validation of satellite-derived remote sensing data, ensuring delivery of higher quality results for broader scale environmental monitoring products. </p> <p>Images are captured half hourly during daylight hours. Images and data products, including timeseries of the Green Chromatic Coordinate (Gcc) for a region-of-interest (ROI) that delineates an area of specific vegetation type, are made available on an almost real-time basis.</p> <p>The 25 hectare site lies on the Atherton Tablelands in the wet tropical rainforests of Australia at 680-740 m elevation. It is situated in Danbulla National Park within the Wet Tropics World Heritage Area. The forest is classified as Regional Ecosystem (RE) 7.3.36a, complex mesophyll vine forest. The climate is seasonal with approximately 60% of rain falling between January and March and the landform is moderately inclined with a low relief. There are 208 species in the site, and average canopy height is 28 m, ranging from 23 to 44 m. All stems ≥ 10 cm diameter are measured, tagged and mapped. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/robson-creek-rainforest-supersite/. </p> <p>Other images collected at the site include photopoints, digital cover photography (DCP) and ancillary images of fauna and flora.</p>

  • Categories    

    <p>Fixed cameras installed at the Cumberland Plain SuperSite provide a time series of fine scale data as a long-term record of vegetation structure and condition. This dense time series of phenocam images provides data for analysis of ecological responses to climate variability, and when consolidated across the entire terrestrial ecosystem research network, supports calibration and validation of satellite-derived remote sensing data, ensuring delivery of higher quality results for broader scale environmental monitoring products.</p> <p>Images are captured half hourly during daylight hours. Images and data products, including timeseries of the Green Chromatic Coordinate (Gcc) for a region-of-interest (ROI) that delineates an area of specific vegetation type, are made available on an almost real-time basis.</p> <p>The Cumberland Plain SuperSite was established in 2012 in a protected remnant of Shale Gravel Transition Forest, located on the Hawkesbury Campus of the University of Western Sydney in New South Wales. The vegetation at the site and in the images is dominated by <i>Eucalyptus moluccana</i> and <i>E. fibrosa</i>, which have hosted a population of mistletoe (<i>Amyema miquelii</i>); a subcanopy of <i>Melaleuca decora</i> is visible in some gaps. More ecological details about the site are available in Griebel et al. (2021). The ecosystem is subject to pressure from altered fire regimes, urban development, conversion to agriculture and extreme climate events. However, the forest patch at the site is in excellent condition with the exception of edge effects. For additional site information, see https://deims.org/a1bb29d8-197c-4181-90d8-76083afd44bb/ .</p> <p>Other images collected at the site include photopoints, digital cover photography (DCP), and ancillary images of fauna and flora.</p>

  • Categories    

    <p>Fixed cameras installed at the Litchfield Savanna SuperSite provide a time series of fine scale data as a long-term record of vegetation structure and condition. This dense time series of phenocam images provides data for analysis of ecological responses to climate variability, and when consolidated across the entire terrestrial ecosystem research network, supports calibration and validation of satellite-derived remote sensing data, ensuring delivery of higher quality results for broader scale environmental monitoring products. </p> <p>Images are captured half hourly during daylight hours. Images and data products, including timeseries of the Green Chromatic Coordinate (Gcc) for a region-of-interest (ROI) that delineates an area of specific vegetation type, are made available on an almost real-time basis. </p><p> The Litchfield Savanna SuperSite was established in 2013 in Litchfield National Park. Site selection was influenced by the history of long-term monitoring work undertaken in this area by the Darwin Centre for Bushfire Research (formerly Bushfires NT). The core 1ha plot is dominated by <em>Eucalyptus miniata</em> and <em>Eucalyptus tetrodonta</em>. The site is representative of the dominant ecosystem type across northern Australia: frequently burnt tropical savanna in high rainfall areas. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/litchfield-savanna-supersite/ . </p><p>Other images collected at the site include photopoints, digital cover photography (DCP), and ancillary images of flora. </p>

  • Categories      

    The Soil Moisture Integration and Prediction System (SMIPS) produces national extent daily estimates of volumetric soil moisture at a resolution of approximately 1km or 0.01 decimal degrees. SMIPS also generates an index of between 0-1 which approximates how full the 90cm metre soil moisture store is at a particular location and time. The SMIPS model itself consists of two linked soil moisture stores, a shallow quick responding 10cm upper store and a deeper, slower responding 80cm store. SMIPS is parameterised using physical properties from the <a href ='https://www.clw.csiro.au/aclep/soilandlandscapegrid/'>Soil and Landscape Grid of Australia </a>and takes a data model fusion approach for model forcing. Version 1.0 of the SMIPS model uses precipitation and potential evapotranspiration data from the Bureau of Meteorology’s <a href="http://www.bom.gov.au/water/landscape/assets/static/publications/AWRALv6_Model_Description_Report.pdf">AWRA Model</a>. In addition to version 1.0 of the model, an experimental version of the model is available for user testing. This version of the model uses precipitation data supplied by an experimental CSIRO daily rainfall surface generated using spatial data from the NASA Global Precipitation Mission as a base and enhanced using rainfall observations from the Bureau of Meteorology (BoM) rainfall gauge network, and various landscape covariates, processed using a machine learning approach. <br> To help increase model accuracy, the internal SMIPS model states are adjusted or ‘bumped’ by daily observational data from the European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) satellite mission.

  • Categories    

    <p>Fixed cameras installed at the Wombat Stringybark Eucalypt SuperSite provide a time series of fine scale data as a long-term record of vegetation structure and condition. This dense time series of phenocam images provides data for analysis of ecological responses to climate variability, and when consolidated across the entire terrestrial ecosystem research network, supports calibration and validation of satellite-derived remote sensing data, ensuring delivery of higher quality results for broader scale environmental monitoring products.</p> <p>Images are captured half hourly during daylight hours. Images and data products, including timeseries of the Green Chromatic Coordinate (Gcc) for a region-of-interest (ROI) that delineates an area of specific vegetation type, are made available on an almost real-time basis.</p> <p>The site was established in 2010 in the Wombat State Forest in Central Victoria. The site is dry eucalypt forest with main species <em>Eucalyptus obliqua</em>, <em>Eucalyptus radiata</em> and <em>Euclayptus rubida</em>. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/wombat-stringybark-eucalypt-supersite/.</p> <p>Other images collected at the site include photopoints, digital cover photography (DCP), and ancillary images of fauna and flora.</p>