Creation year

2021

67 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
From 1 - 10 / 67
  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Cow Bay flux station was established in December 2008 and managed by James Cook University. The forest is classified as complex mesophyll vine forest, there are 94 species in the core 1Ha, and average tree height is 22m. Elevation of the site is 90m and mean annual precipitation is 3935mm. The Daintree Rainforest is one of the most biodiverse forests in Australia.The instruments are mounted on a walk-up tourist tower at 35m. Fluxes of heat, water vapour and carbon dioxide are measured using the open-path eddy flux technique. Supplementary measurements above the canopy include temperature, humidity, windspeed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation.The early years 2009 - 12 had several data gaps. Shadowing of the radiometric equipment continues to cause artifacts on the radiometers - these can be seen as reduction in downwelling radiation with solar inclination. The site is part of the FNQ Rainforest SuperSite - associated with the Daintree node, which is part of the TERN Australian SuperSite Network (ASN). <br/> For additional site information, see https://supersites.tern.org.au/supersites/fnqr-daintree .<br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /><br /> This is a topographically flat area, primarily comprised of the following soil types: sandy loams, scattered clays, red brown earths, transitional red brown earth, sands over clay and deep sands. Stream valleys and layered soil and sedimentary materials are found across the landscape. <br /><br /> The flux station tower extends to 20m, however flux measurements are recorded from slightly lower than this. Mean annual precipitation from a nearby Bureau of Meteorology site measured 465 mm. Maximum temperatures ranged from 37.4°C (in January) to 16.6°C (in July), while minimum temperatures ranged from 29.0°C (in January) to 11.8°C (in July). Maximum temperatures varied on a seasonal basis by approximately 20.8°C and minimum temperatures by 17.2°C. <br /> The site is within a wider research area (60 x 60 km) that supports a network of flux stations, which have been in operation since late 2001 onwards.<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br />The flux station site is located within an area of dryland agriculture. The surrounding area is dominated by broadacre farming practices. The vegetation cover is predominantly pasture. Elevation of the site is close to 152m and mean annual precipitation at a nearby Bureau of Meteorology site measures 650mm. Maximum temperatures range from 12.3°C (in July) to 29.7°C (in February), while minimum temperatures range from 10.4°C (in July) to 26.8°C (in February).<br /><br />The instrument mast is 4 meters tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall and net radiation are measured. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>.<br /> <br /> The Gingin site was established in June 2011 by CSIRO and is now managed by Edith Cowan University Centre for Ecosystem Management. The site is a natural woodland of high species diversity. The overstorey is dominated by Banksia spp. mainly B. menziesii, B. attenuata, and B. grandis with a height of around 7m and leaf area index of about 0.8. There are occasional stands of eucalypts and acacia that reach to 10m and have a denser foliage cover. There are many former wetlands dotted around the woodland, most of which were inundated all winter and some had permanent water 30 years ago. The watertable has now fallen below the base of these systems and they are disconnected and are no longer permanently wet. The fine sediments, sometimes diatomaceous, hold water and they have perched watertables each winter. There is a natural progression of species accompanying this process as they gradually become more dominated by more xeric species. The soils are mainly Podosol sands, with low moisture holding capacity. Field capacity typically about 8 to 10%, and in summer these generally hold less than 2% moisture. The water tabl is at about 8.5 m below the surface, and a WA Dept of water long-term monitoring piezometer is near the base of the tower. The instrument mast is 14m tall, with the eddy covariance instruments mounted at 14.8m. Fluxes of carbon dioxide, water vapour and heat are quantified with open-path eddy covariance instrumentation. Ancillary measurements include temperature, air humidity, wind speed and direction, precipitation, incoming and outgoing shortwave radiation, incoming and outgoing long wave radiation, incoming total and diffuse PAR and reflected PAR. Soil water content and temperature are measured at six soil depths. Surface soil heat fluxes are also measured. A COSMOS Cosmic ray soil moisture instrument is installed, along with a logged piezometer, and nested piezometers installed with short screens for groundwater profile sampling. To monitor the watertable gradient, piezometers will be installed 500 m esat and west of the tower. <br/> For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/gingin-banksia-woodland-supersite/. <br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Arcturus greenhouse gas (GHG) monitoring station was established in July 2010, 48 km southeast of Emerald, Queensland, with flux tower measurements starting in June 2011 until early 2014. The station was part of a collaborative project between Geoscience Australia (GA) and CSIRO Marine and Atmospheric Research (CMAR). Elevation of the site was approximately 170m asl and mean annual precipitation was 572mm. The tower bordered 2 land use types split N-S: To the west lightly forested tussock grasslands; To the east crop lands, cycling through fallow periods.The instruments were installed on a square lattice tower with an adjustable pulley lever system to raise and lower the instrument arm. The tower was 5.6m tall with the instrument mast extending a further 1.1m above, totalling a height of 6.7m. Fluxes of heat, water vapour, methane and carbon dioxide were measured using the open-path eddy flux technique. Supplementary measurements above the canopy included temperature, humidity, windspeed, wind direction, rainfall, and the 4 components of net radiation. Soil heat flux, soil moisture and soil temperature measurements were also collected. <br /> For additional site information, see http://www.ozflux.org.au/monitoringsites/arcturus/index.html.<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The site is located on a low lying plain dominated by Mitchell Grass (<em>gen. Astrebla</em>). Elevation of the site is close to 250m and mean annual precipitation at a nearby Bureau of Meteorology site is 640mm. Maximum temperatures range from 28.4°C (in June/ July) to 39.1°C (in December), while minimum temperatures range from 11.2°C (in July) to 24.4°C (in December).<br /><br />The instrument mast is 5 meters tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall and net radiation are measured. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.<br /><br />Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008. Biomass Harvest - mean live biomass: 0.00 gm-2 (standard error: 0.00) , mean standing dead biomass: 163.42 gm-2 (standard error: 16.73), mean litter biomass: 148.99 gm-2 (standard error: 21.32), total mean biomass: 312.40 gm-2 (standard error: 30.80), Soil- Clay: 14.47% (volume <1µm), Silt: 51.23% (volume <1µm), Sand: 34.30% (volume <1µm), Sand (>1 µm): 1.02% (total weight).<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The site is classified as an open woodland savanna. The overstory is co-dominated by tree species <em>Eucalyptus miniata</em> and <em>Eucalyptus tentrodonata</em>, and average tree height is 14–16m. Elevation of the site is close to 64m and mean annual precipitation is 1750mm. Maximum temperatures range from 30.4°C (in July) to 33.2°C (in November), while minimum temperatures range from 19.3°C (in July) to 25.4°C (in November). Therefore, the maximum and minimum range varies from 7°C (wet season) to 11°C (dry season). <br /><br /> The instrument mast is 23m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Otway flux station was located at Narrinda South in south west Victoria, Australia.The pasture was grazed by dairy cattle with average grass height of 0.1m. Annual average rainfall at the site was around 800mm and was only moderately seasonal. Mean daily temperature ranged from 25°C in February to 12°C in July. The flux station was situated on a 10m tower. Fluxes of heat, water vapour and carbon dioxide were measured using the open-path eddy covariance technique. Supplementary measurements included temperature, humidity, rainfall, total solar, photosynthetically active radiation (PAR) and net radiation. Soil temperature and heat flux were also measured. The Otway flux station was established in February 2007 on private land at Nirranda South and managed by CSIRO Marine and Atmospheric Research staff as part of the Cooperative Research Centre for Greenhouse Gas Technologies.<br />For additional site information, see http://www.ozflux.org.au/monitoringsites/otway/index.html . <br><br>

  • Categories    

    This dataset includes upper and lower thermal limits, voluntary exposure to extreme cold and warm temperatures, ATP levels, and longevity of <i>Acyrtociphom pisum</i> and <i>Hippodamia convergens</i>. Pathogens can modify many aspects of host behavior or physiology, with cascading impacts across trophic levels in terrestrial food webs. These changes include thermal tolerance of hosts, however, the effects of fungal infections on thermal tolerances and behavioral responses to extreme temperatures of prey (<i>Acyrtociphon pisum</i>) and predator (<i>Hippodamia convergens</i>) insect species have rarely been studied. We measured the impacts of fungal infection (at two levels: low and high spore load) on thermal tolerance (critical thermal maximum and minimum), voluntary exposure, energetic cost, and survival of both insect species. Fungal infection reduced thermal tolerance to heat in both insect species, but only reduced tolerance to cold of the predator. Voluntary exposure to extreme temperatures was modified by the infection, energetic cost increased with infection and thermal conditions, and survival was significantly reduced in both insect species.

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /><br /> The site is woodland savanna with an overstory co-dominated by tree species <em>E. tetrodonta</em>, <em>C. latifolia</em>, <em>Terminalia grandiflora</em>, <em>Sorghum sp.</em> and <em>Heteropogon triticeus</em>. Average canopy height measures 16.4 m. <br />Elevation of the site is close to 110m and mean annual precipitation at a nearby Bureau of Meteorology site is 1170mm. Maximum temperatures range from 37.5°C (in October) to 31.2°C (in June), while minimum temperatures range from 12.6°C (in July) to 23.8°C (in January). Maximum temperatures range seasonally by 6.3°C and minimum temperatures by 11.2°C. <br /><br />The instrument mast is 23 meters tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy.<br />Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008. <br /><br />