biota
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
This dataset contains records of vascular plant species from selected TERN AusPlots in South Australia. Preparation from raw data involved extraction of all vouchered species from the plots, the removal of intra-specific taxa (only genus and species used to define individual taxa) and removal of duplicate records and those not determined to species. Species list has been appended in this record.
-
The record contains information on the number of aphids and chemical footprints of two aphid species. The data was collected in field and laboratory trials, we first examined how plant microsites alter fitness by measuring the fecundity of each species. Next, we tested whether intra- and interspecific pre-inhabitation modify habitat selection in two aphid species. Then we conducted laboratory trials showed that <i>R. maidis</i> displaced <i>R. padi</i>. Through gas chromatography-mass spectrometry analysis and bioassays testing the effects of aphid density and footprint extracts, we found a density-dependent response, with <i>R. padi</i> avoiding locations previously inhabited by <i>R. maidis</i>. Chemical analysis of footprint crude extracts showed a highly abundant compound, 1-hexacosanol, and when presented as the synthetic form also elicited <i>R. padi</i> displacement.
-
This dataset contains the number (count) of dingo, red fox and feral cat photographs from remote camera traps in the Simpson Desert. Note, spatial location for the sites has been desensitized. Please contact the data author for site details.
-
The data set contains information on Camera Trap Fauna Survey conducted in the Samford Peri-urban Site in 2017. Information on the camera trap site location, height, observation time, species identification and related field remarks have been presented in this data set.
-
Mating system and fitness data for families of <em>Eucalyptus socialis</em> grown in common garden experiments. Families collected across a fragmentation gradient. Open-pollinated progeny arrays were collected and reared in the common garden experiments. These open-pollinated progeny arrays were also genotyped at microsatellite loci to generate the mating system data. Data showed association between fragmentation on mating system, which in turn impacted fitness. Please contact owner prior to use.
-
This record contains information on the Invertebrate Fauna Survey, from the 25 hectare study site in Robson Creek, Far North Queensland. Information on the total number of individuals of invertebrates sampled from understorey trees have been documented from 10 species of trees, with five individuals per species sampled. Tree species selection was based on the rarity in the study site, i.e. 'common' or 'rare' in the 25 ha plot.
-
A total of 53 native Australian species (52x C3, 1x C4) were sampled from 22 plant families and 7 growth forms along a transect in WA spanning 9.56 degrees latitude and 6.85 degrees longitude. Samples were collected using the nationally-accepted AusPlots Rangelands methodology. Samples were stored to preserve isotopic signatures and analysed using standard techniques for mass spectroscopy, including internationally-calibrated standards. Technical replicates of 13% showed very low drift (0.07).
-
<p> The dataset aims at studying associations between mating system parameters and fitness in natural populations of trees. Fifty-eight open-pollinated progeny arrays were collected from trees in three populations. Progeny were planted in a reciprocal transplant trial. Fitness was measured by family establishment rates. We genotyped all trees and their progeny at eight microsatellite loci. Planting site had a strong effect on fitness, but seed provenance and seed provenance × planting site did not. Populations had comparable mating system parameters and were generally outcrossed, experienced low biparental inbreeding and high levels of multiple paternity. As predicted, seed families that had more multiple paternities also had higher fitness, and no fitness-inbreeding correlations were detected. Demonstrating that fitness was most affected by multiple paternities rather than inbreeding, we provide evidence supporting the constrained inbreeding hypothesis; i.e. that multiple paternity may impact on fitness over and above that of inbreeding, particularly for preferentially outcrossing trees at life stages beyond seed development. This dataset could potentially be reused for meta-analysis or review of effects of habitat fragmentation on plants (e.g. pollination, mating system, genetic diversity etc). Please contact owner prior to re-use. </p> <p>This is part of the authors' PhD at the University of Adelaide, supervised by Prof Andrew Lowe, Dr Mike Gardner and Dr Kym Ottewell. Main goals of the project were 1. Examine and quantify the impact of fragmentation and tree density on mating patterns, and how this may vary with pollinators of differing mobility 2. Determine the theoretical expectations and perform empirical tests of mating pattern-fitness relationships in trees 3. Explore the plant genetic resource management implications that arise from the observations in aims 1 and 2 </p>
-
The dataset contains information from the first initial trial of the AusPlots Fauna Protocol conducted at Calperum Station, Renmark, South Australia. Selected proposed methodologies and fauna survey techniques were trialled for logistical purposes. After the field trials, the proposed methodologies and techniques were refined. The dataset contains species information on fauna species captures, observations, and specimen collections from the April-May 2015 field trials. The data can be used to review the outcomes of the survey methodologies, presence data of the species recorded, morphological details of the animals recorded, and relate field data to the whole specimen and tissue specimens collected. The Enhancing Long-term Surveillance Monitoring Across Australia Programme will enhance the breadth and depth of Australia's terrestrial ecosystem condition monitoring and reporting at national and regional scales through building on the Terrestrial Ecosystem Research Network (TERN) AusPlots Facility. Specifically, this will be achieved by increasing the range and type of AusPlots field sites and monitoring, and through providing guidelines, protocols manuals or standards that will enhance environmental data quality.
-
The qualities of these data include: (i) sound experimental design to detect a change between confounding factors, (ii) large sample size, (iii) microchipped animals, (iv) validated heamatological processing on the wild Australian lizard Tiliqua rugosa involving a collaboration between wildlife ecologists and veterinary scientists. Its reuse potential may involve a comparative analysis of body size, haematological parameters with other long-lived, medium-sized lizards, ectoparasite studies (Aponomma hydrosauri, Amblyomma libatum) for different host populations, and background justification for ecotoxicological (pesticide) studies in farmland. Using a using a multivariate, one-way nested Type I PERMANCOVA (analysis of covariance) design, body size, blood samples and ectoparasite presence was collected on a total of 119 animals from two different populations in southern Australia. One population was from an intensively managed cropping environment and one was from an adjacent a less intensively managed grazing environment. This study took place in extensive rangelands and the fragmented landscapes of the South Australian Murray Mallee cereal cropland in southern Australia. Adult and juvenile T. rugosa were captured for sampling at one rangeland (baseline) site and three severely modified (severe) landscape-scaled sites (LS1, LS2, LS3) over a large area (68 km × 84 km or 571,200 ha) across the croplands. Two animal sampling designs were used to collect data on physiological health (Design 1: Baseline vs Severe and Design 2 - Severe only). Data collected: Record No., Animal No., Treatment, Habitat Type, Landscape No., Connectivity Class, Age Class, Linear Body Size Index (LBSI), Heterophil (H) Field of View, Heterophil per microlitre, Total White Blood Cell Count, Absolute Heterophil Count, % Heterophil Count, Absolute Lymphocyte (L) Count, % Lymphocytes, H:L Ratio (Absolute), H:L Ratio (%), Absolute Monocytes, % Monocytes , Absolute Other Granulocytes , % Other Granulocytes, % Polychromasia, Snout-Vent Length (mm), Total No. Ectoparasites per Animal.