Keyword

30 meters - < 100 meters

106 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
From 1 - 10 / 106
  • Categories    

    The Central Appalachian region, USA, contains several high elevation-endemic woodland salamanders (genus Plethodon), which are thought to be particularly vulnerable to climate change due to their restricted distributions and low vagility. In West Virginia, there is a strong management focus on protection and recovery of the federally threatened Cheat Mountain salamander (Plethodon nettingi; CMS). To support this focus, there is a need for improved understanding of CMS occurrence-habitat relationships and spatially explicit projections of fine-scale contemporary and potential future habitat quality to inform management actions. In addition, there is concern among resource managers that climate change may increase habitat quality at high elevations for CMS competitors, particularly the eastern red-backed salamander (Plethodon cinereus; RBS), potentially resulting in increased competition pressure for CMS. To address these knowledge gaps, we created ecological niche models for CMS and RBS using the Random Forest classification algorithm and used the estimated occurrence-habitat relationships to assess ecological niche overlap between the species and project fine-scale contemporary and potential future habitat availability and quality. We estimated that the ecological niches of CMS and RBS were 80.5% similar, and habitat projections indicated the species would exhibit opposite responses to climate change in our region. For CMS, we estimated that amount of high-quality habitat will be reduced by mid-century and potentially lost by end-of-century, but that moderate and low-quality habitat will persist. For RBS, we estimated that amount of high-quality habitat will increase through end-of-century, and that high elevations will become more suitable for the species, indicating that competition pressure for CMS is likely to increase. This study improves understanding of important habitat characteristics for CMS and RBS, and our spatially explicit projections can assist natural resource managers with habitat protection actions, species monitoring efforts, and climate change adaptation strategies.

  • Categories    

    This is a spatial dataset comprising predictions of vegetation condition for biodiversity for the Southeast Queensland bioregion. The dataset was created using a gradient boosting decision tree (GBDT) model based on 10 vegetation-specific remote sensing datasets and 7,938 training sites of known vegetation community and condition state across Southeast Queensland, Brigalow Belt and Central Queensland Coast bioregions. Condition score was modelled as a function of distance in the remote sensing (RS) space within homogeneous vegetation communities. The product is intended to represent predicted BioCondition for 2021 rather than any singe date.

  • Categories    

    The Area of Applicability (AOA) describes the area to which a predictive model can reliably be applied, based on the predictor space covered by the underlying training data. It was evaluated following the approach proposed by Meyer and Pebesma (2021).<br></br> The JRSRP seasonal surface reflectance composites between winter 2014 and winter 2024 were used as a proxy for the range of representative surface reflectance values likely to be encountered across the continent under varying environmental conditions from which fractional cover predictions are made. The AOA of the FCv3 model was computed for each seasonal surface reflectance composite, then summarised as a frequency map representing the proportion of seasons that a location was outside the AOA.<br></br> For each state, five files are provided: an annual product summarising the AOA across all seasons, and four showing seasonal AOA frequencies for summer, autumn, winter, and spring.<br></br>

  • Categories    

    This is a spatial dataset comprising predictions of vegetation condition for biodiversity for the Central Queensland Coast bioregion. The dataset was created using a gradient boosting decision tree (GBDT) model based on 10 vegetation-specific remote sensing datasets and 7,938 training sites of known vegetation community and condition state across Southeast Queensland, Brigalow Belt and Central Queensland Coast bioregions. Condition score was modelled as a function of distance in the remote sensing (RS) space within homogeneous vegetation communities. The product is intended to represent predicted BioCondition for 2021 rather than any singe date.

  • Categories    

    <p>This dataset lists land surface substrate characteristics observed in Rangeland sites across Australia by the TERN Surveillance Monitoring team, using standardised AusPlots methodologies. </p> <p>Land surface substrate observations are collected at each site as part of the AusPlots Point intercept method. At each site, observations on the substrate type (e.g. rock, coarse woody debris, litter) are recorded on transect laid out on the plots. These records form the basis for ground cover derivation, see the AusPlots Ground cover and Point intercept methods below.</p>

  • Categories    

    This is a spatial dataset comprising predictions of vegetation condition for biodiversity for the Brigalow Belt bioregion. The dataset was created using a gradient boosting decision tree (GBDT) model based on 10 vegetation-specific remote sensing datasets and 7,938 training sites of known vegetation community and condition state across Southeast Queensland, Brigalow Belt and Central Queensland Coast bioregions. Condition score was modelled as a function of distance in the remote sensing (RS) space within homogeneous vegetation communities. The product is intended to represent predicted BioCondition for 2021 rather than any singe date.

  • Categories    

    Terrestrial laser scans were acquired in native Eucalypt Open Forest (dry sclerophyll Box-Ironbark forest) in Victoria, Australia. Two plots (RUSH06 and RUSH07) with a 40 m radius were established in Rushworth forest and partially harvested in May 2012 to acquire accurate estimates of above-ground biomass. The main tree species in these plots were Eucalyptus leucoxylon, Eucalyptus microcarpa and Eucalyptus tricarpa. Single trees were extracted from the TLS data and quantitative structure models were used to estimate the tree volume directly from the point cloud data. Above-ground biomass (AGB) was inferred from the derived volumes and basic wood density information, and compared with estimates of above-ground biomass derived from allometric equations and destructive sampling. See <a href="https://doi.org/10.1111/2041-210X.12301">Calders et al. (2014)</a> and <a href="https://apo.org.au/node/234726">Murphy et al. (2014)</a> for further information.

  • Categories    

    This data set contains information on Electrical Conductivity and pH from bore water from two plots, Blackbutt and Salmongum the Great Western Woodland Site.

  • Categories    

    <p>The dataset consists of composited seasonal surface reflectance images (4 seasons per year) created from the full time series of Landsat TM/ETM+/OLI imagery. The imagery has been composited over a season to produce imagery which is representative of that period, using techniques which will reduce contamination by cloud and other problems. This creates a regular time series of reflectance values which captures the variability at seasonal time scales. The benefits are a regular time series with minimal missing data or contamination from various sources of noise as well as data reduction. Each season has exactly one value (per band) for each pixel (or is null, i.e., missing), and the value for that season is assumed to be the representative of the whole season. The algorithm is based on the medoid (in reflectance space) over the time period (the medoid is a multi-dimensional analogue of the median), which is robust against extreme values.</p>

  • Categories    

    The seasonal dynamic reference cover method product compares the current ground cover level of each pixel to a reference pixel based on the historical timeseries and is available for Queensland from 1987 to present. It is created using a modified version of the dynamic reference cover method developed by <a href="https://doi.org/10.1016/j.rse.2012.02.021">Bastin et al (2012) </a>. This approach calculates a minimum ground cover image over all years to identify locations of most persistent ground cover in years with the lowest rainfall, then uses a moving window approach to calculate the difference between the window's central pixel and its surrounding reference pixels. The output is a difference image between the cover amount of a pixel's reference pixels and the actual cover at that pixel for the season being analysed. Negative values indicate pixels which have less cover than the reference pixels.<br> The main differences between this method and the original method are that this method uses seasonal fractional ground cover rather than the preceding ground cover index (GCI) and this method excludes cleared areas and certain landforms (undulating slopes), which are considered unsuitable for use as reference pixels.<br> This product is based upon the JRSRP Fractional Cover 3.0 algorithm.