Decadal
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
This dataset lists land surface substrate characteristics observed in Rangeland sites across Australia by the TERN Surveillance Monitoring team, using standardised AusPlots methodologies. <br /> Land surface substrate observations are collected at each site as part of the AusPlots Point intercept method. At each site, observations on the substrate type (e.g. rock, coarse woody debris, litter) are recorded on transect laid out on the plots. These records form the basis for ground cover derivation, see the AusPlots Ground cover and Point intercept methods below.<br />
-
We used Digital Soil Mapping (DSM) technologies combined with the real-time collations of soil attribute data from TERN's recently developed Soil Data Federation System, to produce a map of Australian Soil Classification Soil Order classes with quantified estimates of mapping reliability at a 90 m resolution.
-
This dataset list landform characteristics (i.e. visible features of a land area) observed in Rangeland sites across Australia by the TERN Surveillance Monitoring team, using standardised AusPlots methodologies. <br /> Landform observations are recorded at each site as part of the AusPlots Plots and Physical Descriptions method. Observations on the landform elements and their patterns are recorded as part of this protocol.<br />
-
<br>This dataset lists the occurrence of fungi and their abundance identified at rangeland sites across Australia by the TERN Surveillance Monitoring team, using standardised AusPlots methodologies. <br /> <br>Fungi occurrences (i.e. a sample of a fungi at a particular point and time) are methodically identified at each site as part of the AusPlots Point intercept method. Fungi occurrences data can be aggregated across the site to calculate relative abundance, fungi ground cover.<br />
-
<br>This dataset lists the plant communities from Rangeland sites across Australia described by the TERN Surveillance Monitoring team, using standardised AusPlots methodologies. <br /> <br> For each plant community, vegetation condition as well as the spatial extent of the community, are described using AusPlots Plot and physical descriptions, and Structural summary and homogeneity methods.<br /> Plant specimen, soil, basal area and structural information are also assessed at each site and form part of the TERN Surveillance Monitoring Program data collection.<br />
-
<br>This dataset lists the parameters associated with disturbance from Rangeland sites across Australia described by the TERN Surveillance Monitoring team, using standardised AusPlots methodologies. <br /> <br> For each site, the disturbance parameters such as erosion type, state of erosion, extent of erosion is studied following the AusPlots Plot Description protocol and becomes an important part of understanding the site disturbance in the AusPlots Rangelands.<br />
-
This is Version 2 of the Australian soil pH (CaCl<sub>2</sub>) product of the Soil and Landscape Grid of Australia.<br><br> It supersedes the Release 1 product that can be found at https://doi.org/10.4225/08/546F17EC6AB6E<br><br> The map gives a modelled estimate of the spatial distribution of the pH of soils across Australia.<br><br> The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and 100-200 cm. These depths are consistent with the specifications of the GlobalSoilMap.net project. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). An additional measure of model reliability is through assessment of model extrapolation risk. This measure provides users a spatial depiction where model estimates are made within the domain of the observed data or not.<br><br> Detailed information about the Soil and Landscape Grid of Australia can be found at - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html">SLGA</a><br><br> - Total number of gridded maps for this attribute: 24.<br> - Number of pixels with coverage per layer: 2007M (49200 * 40800).
-
This is Version 2 of the Australian Available Volumetric Water Capacity (AWC) product of the Soil and Landscape Grid of Australia.<br></br> The map gives a modelled estimate of the spatial distribution of AWC soil hydraulic property in soils across Australia.<br></br> The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and 100-200 cm. These depths are consistent with the specifications of the GlobalSoilMap.net project - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf">GlobalSoilMaps</a>. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels).<br><br> Detailed information about the Soil and Landscape Grid of Australia can be found at - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html">SLGA</a><br /><br /> <ul style="list-style-type: disc;"><li>Attribute Definition: Available Volumetric Water Capacity (Units: percent);</li> <li>Period (temporal coverage; approximately): 1950-2021;</li> <li>Spatial resolution: 3 arc seconds (approx. 90 m);</li> <li>Total number of gridded maps for this attribute: 18;</li> <li>Number of pixels with coverage per layer: 2007M (49200 * 40800);</li> <li>Target data standard: GlobalSoilMap specifications;</li> <li>Format: Cloud Optimised GeoTIFF</li></ul>
-
The record contains information on beetle succession in decaying <i>Eucalyptus obliqua</i> logs, from 1999-2009. Data on beetle species identification, field sampling notes, and collection details from eucalyptus logs across the decade range from 1999 - 2009 are provided.
-
This dataset contains a series of spatial outputs describing probabilistic species predictive occupancy (Species Occupancy Models, or SOM) & habitat suitability (Maximum Entropy, or Maxent) surfaces, the underlying data used to calculate these models & model projections predicting the impact of climate change on flora Maxent surfaces. <br> Model outputs are combination outputs dependent on known species occurrence in the landscape, the species relationship with environmental variables (covariates) such as temperature, rainfall and topography; and its predicted occurrence based on covariate analysis. Maxent models do not predict actual occupancy, but rather habitat suitability, while SOMs predict actual occupancy. confounding factors such as inter-species competition, geographical barriers and disturbance events play a significant role in species occurrence, and are not considered in Maxent or SOM. Flora Maxent climate change projections used NSW and Australian Regional Climate Modelling (NARCliM) variables to predict habitat suitability for a baseline year 2000 and projections for 2030 and 2070. <br> Covariates, Fauna & Flora survey records used to create the models are included. <br> More detailed information regarding each model, its processes and outputs are included in the dataset. <br> A web mapping application on the NSW Spatial Collaboration Portal depicts Maxent & SOM of a selected group of vulnerable Flora & Fauna from this dataset. Access the webapp through the link below: <br> https://portal.spatial.nsw.gov.au/portal/home/item.html?id=78e6ae3d34aa45d2b8118fd0308d6459