From 1 - 10 / 19
  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br /> The flux station is located within an area of dryland agriculture. The surrounding area is dominated by broadacre farming practices. The vegetation cover is predominantly pasture. Elevation of the site is close to 330&nbsp;m. Climate information comes from the nearby Pingelly BoM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445&nbsp;mm with highest rainfall in June and July of 81&nbsp;mm each month. Maximumum and minuimum annual rainfall is 775 and 217&nbsp;mm, respectively. Maximum temperatures range from 31.9&nbsp;°C (in Jan) to 15.4&nbsp;°C (in July), while minimum temperatures range from 5.5&nbsp;°C (in July) to 16.0&nbsp;°C (in Feb).<br /><br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Alice Springs Mulga flux station is located on Pine Hill cattle station, near Alice Springs in the Northern Territory. The woodland is characterized by the <i>Acacia aneura</i> canopy, which is 6.5&nbsp;m tall on average. Elevation of the site is 606&nbsp;m above sea level, and the terrain is flat. Mean annual precipitation at the nearby (45&nbsp;km distant) Bureau of Meteorology station is 305.9&nbsp;mm but ranges between 100&nbsp;mm in 2009 to 750&nbsp;mm in 2010. Predominant wind directions are from the southeast and east. The extent of the woodland is 11&nbsp;km to the east of the flux station and 16&nbsp;km to the south. The soil is red sandy clay (50:50 sand:clay) overlying a 49&nbsp;m deep water table. Pine Hill Station is a functioning cattle station that has been in operation for longer than 50 years. The instrument mast is 13.7&nbsp;m tall. Fluxes of heat, water vapour and carbon are measured using the open-path eddy covariance technique at 11.6&nbsp;m. Supplementary measurements above the canopy include temperature and humidity (11.6&nbsp;m), windspeed and wind direction (9.25&nbsp;m), downwelling and upwelling shortwave and longwave radiation (12.2&nbsp;m). Precipitation is monitored in a canopy gap (2.5&nbsp;m). Supplementary measurements within and below the canopy include barometric pressure (1&nbsp;m), wind speed (2&nbsp;m, 4.25&nbsp;m and 6.5&nbsp;m), and temperature and humidity (2&nbsp;m, 4.25&nbsp;m and 6&nbsp;m). Below ground soil measurements are made in bare soil, mulga, and understory habitats and include ground heat flux (0.08&nbsp;m), soil temperature (0.02&nbsp;m – 0.06&nbsp;m) and soil moisture (0 – 0.1&nbsp;m, 0.1 – 0.3&nbsp;m, 0.6 – 0.8&nbsp;m and 1.0 – 1.2&nbsp;m). Ancillary measurements include soil water and carbon fluxes, leaf water potential, leaf gas exchange, stem basal area, stem growth, litter production, leaf area index, stem hydraulic conductance, and carbon and water stable isotope ratios. <br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br /> The flux station was established in 2017 in Wandoo Woodland, which is surrounded by broadacre farming. About 80% of the overstorey cover is <em>Eucalyptus accedens</em>. Climate information comes from the nearby Pingelly BOM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445&nbsp;mm with highest rainfall in June and July of 81&nbsp;mm each month. Maximum and minimum annual rainfall is 775 and 217&nbsp;mm, respectively. Maximum temperatures range from 31.9&nbsp;°C (in Jan) to 15.4&nbsp;°C (in July), while minimum temperatures range from 5.5&nbsp;°C (in July) to 16.0&nbsp;°C (in Feb). The Noongar people are the traditional owners at Boyagin. <br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> Fletcherview Tropical Rangeland SuperSite was established in 2021 at James Cook University’s Fletcherview Research Station, a fully operational outback cattle station located 50&nbsp;km west of Townsville, Queensland. The site is used for cattle grazing and is characterised by tall open savanna. The vegetation is dominated by native grasses such as blackspear and kangaroo grasses, as well as introduced species like buffel grass, signal grass and leucaena. Fletcherview typically experiences a dry and wet season, with most rainfall occurring between January and April.<br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The Gingin site was established in June 2011 by CSIRO and is now managed by Edith Cowan University Centre for Ecosystem Management. The site is a natural woodland of high species diversity. The overstorey is dominated by <em>Banksia</em> spp. mainly <em>Banksia menziesii</em>, <em>Banksia attenuata</em>, and <em>Banksia grandis</em> with a height of around 7&nbsp;m and leaf area index of about 0.8. There are occasional stands of eucalypts and acacia that reach to 10&nbsp;m and have a denser foliage cover. There are many former wetlands dotted around the woodland, most of which were inundated all winter and some had permanent water 30 years ago. The watertable has now fallen below the base of these systems and they are disconnected and are no longer permanently wet. The fine sediments, sometimes diatomaceous, hold water and they have perched watertables each winter. There is a natural progression of species accompanying this process as they gradually become more dominated by more xeric species. The soils are mainly Podosol sands, with low moisture holding capacity. Field capacity typically about 8 to 10&nbsp;%; and in summer these generally hold less than 2&nbsp;% moisture. The water table is at about 8.5&nbsp;m below the surface, and a WA Dept of water long-term monitoring piezometer is near the base of the tower. The instrument mast is 14.8&nbsp;m tall, with the eddy covariance instruments mounted at 14.8&nbsp;m. Fluxes of carbon dioxide, water vapour and heat are quantified with open-path eddy covariance instrumentation. Ancillary measurements include temperature, air humidity, wind speed and direction, precipitation, incoming and outgoing shortwave radiation, incoming and outgoing long wave radiation, incoming total and diffuse PAR and reflected PAR. Soil water content and temperature are measured at six soil depths. Surface soil heat fluxes are also measured. A COSMOS Cosmic ray soil moisture instrument is installed, along with a logged piezometer, and nested piezometers installed with short screens for groundwater profile sampling. To monitor the watertable gradient, piezometers will be installed 500&nbsp;m east and west of the tower. <br/> <br/>

  • Categories  

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>This is a topographically flat area, primarily comprised of the following soil types: sandy loams, scattered clays, red brown earths, transitional red brown earth, sands over clay and deep sands. Stream valleys and layered soil and sedimentary materials are found across the landscape.</br> <br>The flux station tower extends to 20&nbsp;m, however flux measurements are recorded from slightly lower than this. Mean annual precipitation from the nearby Bureau of Meteorology is 465&nbsp;mm. Maximum temperatures ranged from 16.6&nbsp;°C (in July) to 37.4&nbsp;°C (in January), while minimum temperatures ranged from 11.8&nbsp;°C (in July) to 29.0&nbsp;°C (in January). Maximum temperatures varied on a seasonal basis by approximately 20.8&nbsp;°C and minimum temperatures by 17.2&nbsp;°C.</br> <br>The site is within a wider research area (60 x 60&nbsp;km) that supports a network of flux stations, which have been in operation since late 2001.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The site is classified as open forest savanna. The overstory is co-dominated by tree species <em>Eucalyptus tetrodonta</em>, <em>Eucalyptus dichromophloia</em>, <em>Corymbia terminalis</em>, <em>Sorghum intrans</em>, <em>Sorghum plumosum</em>, <em>Themeda triandra</em> and <em>Chrysopogon fallax</em>, with canopy height averaging 12.3&nbsp;m. Elevation of the site is close to 175&nbsp;m and mean annual precipitation from a nearby Bureau of Meteorology site measures 895.3 mm. Maximum temperatures range from 29.1&nbsp;°C (in June) to 37.6&nbsp;°C (in July), while minimum temperatures range from 14.6&nbsp;°C (in July) to 24.8&nbsp;°C (in November). Maximum temperatures vary seasonally by 8.5&nbsp;°C and minimum by 10.2&nbsp;°C. <br /><br /> The instrument mast is 15&nbsp;m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry. <br /> Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, nitrogen and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the site in September 2008. <br /><br />

  • Categories  

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).<br /> <br /> The site is classified as an open woodland savanna. The overstory is co-dominated by tree species <em>Eucalyptus miniata</em> and <em>Eucalyptus tentrodonata</em>, and average tree height is 14-16&nbsp;m. Elevation of the site is close to 64&nbsp;m and mean annual precipitation is 1750&nbsp;mm. Maximum temperatures range from 30.4&nbsp;°C (in July) to 33.2&nbsp;°C (in November), while minimum temperatures range from 19.3&nbsp;°C (in July) to 25.4&nbsp;°C (in November). Therefore, the maximum and minimum range varies from 7&nbsp;°C (wet season) to 11&nbsp;°C (dry season).<br /><br /> The instrument mast is 23&nbsp;m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.<br /><br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The Yarramundi Control Paddock site is located near Richmond, NSW (GPS coordinates -33.613469, 150.734864). The site is about 1&nbsp;km east of the Cumberland Plain Woodland flux tower. The climate is warm-temperate, with annual rainfall averaging 728&nbsp;mm, mean maximum temperature in January of 30.4&deg;C and mean minimum temperature in July of 3.6&deg;C (BOM station 067105). The elevation of the site is about 20&nbsp;m asl and the topography is flat. The soil is sandy loam in texture, organic carbon content is <1% nutrient availability is very low in the top 10&nbsp;cm; iron concretions below 50&nbsp;cm indicate poor drainage at times. The vegetation canopy is less than 1&nbsp;m tall, and the plant community is dominated by exotic herbaceous perennials, including <em>Conyza sumatrensis</em>, <em>Setaria parviflora</em>, <em>Cynodon dactylon</em>, <em>Commelina cyanea</em>, <em>Senecio madagascariensis</em>, and <em>Eragrostis curvula</em>. <br /> <br> Fluxes of water vapour, carbon dioxide and heat are quantified with the open-path eddy flux technique from a 2.5&nbsp;m tall mast. Additional measurements above the canopy include temperature, humidity, rainfall and net radiation, and photographs are taken several times per day to track canopy greenness.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The Cumberland Plain flux station is located in a dry sclerophyll forest. The Cumberland Plain Woodland is now an endangered ecological community that encompasses distinct groupings of plants growing on clayey soils. The canopy is dominated by <em>Eucalyptus moluccana</em> and <em>Eucalyptus fibrosa</em>, which host an expanding population of mistletoe. Average canopy height is 23&nbsp;m, the elevation of the site is 20&nbsp;m and mean annual precipitation is 800&nbsp;mm. Fluxes of water vapour, carbon dioxide and heat are quantified with the open-path eddy flux technique from a 30&nbsp;m tall mast. Additional measurements above the canopy include temperature, humidity, wind speed and direction, rainfall, incoming and reflected shortwave and longwave radiation and net, diffuse and direct radiation and the photochemical reflectance index. In addition, profiles of humidity and CO<sub>2</sub> are measured at eight levels within the canopy, as well as measurements of soil moisture content, soil heat fluxes, soil temperature, and 10&nbsp;hr fuel moisture dynamics. In addition, regular monitoring of understory species abundance, mistletoe infection, leaf area index and litterfall are also performed.