Keyword

1 meter - < 30 meters

77 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
From 1 - 10 / 77
  • Categories    

    <p>This data set consists of .tif files of true colour orthomosaics for expansive areas of mangroves in Kakadu National Park in Australia's Northern Territory.</p> <p>The orthomosaics were generated from 68 stereo pairs of true colour aerial photographs acquired in 1991 in the lower reaches of the East Alligator, West Alligator, South Alligator and Wildman Rivers and Field Island, Kakadu National Park, Northern Australia (Mitchell et al., 2007). The photographs were taken at a flying height of 13,000 ft (3,960 m) using a Wild CR10, a standard photogrammetric camera with a frame size of 230 x 230 mm. The focal length was 152 mm. The photographs were scanned by Airesearch (Darwin) with a photogrammetric scanner to generate digital images with a pixel resolution between 12 and 15 mm. The orthomosaics have a spatial resolution of 1 m, cover an area of approximately 742 km<sup>2</sup> and a coastal distance of 86 km. </p> <p>These orthomosaics were co-registered using ground control points identified from 1:100,000 digital topographic maps with a Universal Transverse Mercator (UTM), and subsequently co-registered to LiDAR data acquired over the same region in 2011.</p>

  • Categories    

    This is a series comprises of vegetation condition predictions for biodiversity for the bioregions of Queensland. The datasets were created using a gradient boosting decision tree (GBDT) model based on 10 vegetation-specific remote sensing (RS) datasets and 7,938 training sites of known vegetation community and condition state across Southeast Queensland, Brigalow Belt and Central Queensland Coast bioregions. Condition score was modelled as a function of distance in the remote sensing (RS) space within homogeneous vegetation communities. The product is intended to represent predicted BioCondition for 2021 rather than any singe date. This series includes information relating the version 2.0 products of Spatial BioCondition, which have superseded the version 1.0 products (https://portal.tern.org.au/metadata/TERN/40990eec-5cef-41fe-976b-18286419da0c, https://portal.tern.org.au/metadata/TERN/2c33325c-1dd5-4674-918a-1cd5bfc1a6e3). Spatial BioCondition is not suitable for the measurement of changes in condition over time, and direct comparisons of predictions between versions 1.0 and 2.0 are not advised.

  • Categories    

    <p>This data set consists of a shapefile/kml of mangrove extent and dominant species for Kakadu National Park mangroves generated from true colour aerial photographs acquired in 1991.</p> <p>From true color 1991 orthomosaics of Field Island and the Wildman, West, and South Alligator Rivers, mangroves were mapped by first applying a fine scale spectral difference segmentation within eCognition to all three visible bands (blue, green, and red). A maximum likelihood (ML) algorithm within the environment for visualizing images (ENVI) software was then used to classify all segments using training areas associated with mangroves, but also water, mudflats, sandflats, and coastal woodlands. These were identified through visual interpretation of the imagery. Segmentation was necessary as 1) the diversity of structures and shadows within and between tree crowns limited the application of pixel-based classification procedures and 2) the color balance between the different photographs comprising the orthomosaics varied. All segments were examined individually and methodically to determine whether they should be reallocated to a non-mangrove class (e.g., mudflats) or confirmed as mangroves. Open woodlands dominated by Eucalyptus species could also be visually identified within the aerial photography (AP) orthoimages, although their discrimination was assisted by only considering areas where the underlying LiDAR DTM (Digital Terrain Model) exceeded 10 m, assuming this excludes tidally inundated sections.</p>

  • Categories    

    This dataset contains spatial layers describing Forest Canopy Loss and Recovery from 1998-2019 in NSW Regional Forest Agreements (RFA) Areas along the eastern coast. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2020). These base grids are Landsat in origin and have a resolution of 25m. <br> For this dataset product and the processing of metrics, aspects of canopy loss and disturbances in the forest estate were investigated. Measures of canopy loss and recovery are seen as one of the multiple indicators of forest health. This is related to agents or pressures that affect the capacity of native forests and commercial operations to maintain normal ecosystem functions and sustainably provide productive capacity. <br> To attribute disturbances, as a driver of change, a Multiple Lines of Evidence (MLE) approach was used that leveraged available spatial datasets. This allowed for a project-wide disturbance and disturbance context layer to be generated. This information can be interpreted back against forest cover extent change outputs, in particular the differences between individual years, to identify the areas of change and the likely reasons why. Therefore, landscape trends in forest loss can be potentially assigned or at the very least investigated. <br> The time taken, in terms of years, for areas to recover from losses in forest canopy cover extent can has also been determined. This process identifies the time taken for a patch of forest to return to a 20% canopy cover threshold, and other characteristics such as the forest type and likely disturbance or loss event. <br> Forest Canopy Loss and Recovery uses measures of canopy loss and disturbances which can be interpreted back against forest cover extent change outputs, in particular the differences between individual years, to identify the areas of change and the likely reasons why. Therefore, landscape trends in forest canopy loss can be potentially assigned or at the very least investigated. Time taken in years for areas to recover for losses has also been determined, as-well as other characteristics such as forest type and likely disturbance/loss event. <br> Base cover extent grids used are from the NSW RFA Historic Forest Canopy Cover Extent – 1995 to 2019 product. Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/accordion-content-main/fmip-ecosystemhealth-projectfe1<br> This dataset is superseded by 'NSW Forest Monitoring and Improvement Program State-Wide Historic Forest Canopy Loss and Recovery - 1998 to 2020'

  • Categories    

    This dataset contains predictions of the aboveground biomass density (AGBD) for Australia for 2020. Data were generated by the Global Ecosystem Dynamics Investigation (GEDI) NASA mission, which used a full-waveform LIDAR attached to the International Space Station to provide the first global, high-resolution observations of forest vertical structure. Data include both Level 4A (~25&nbsp;m footprints) and Gridded Level 4B (1&nbsp;km x 1&nbsp;km) Version 2. The Australian portion of the data was extracted from the original global datasets <a href="https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2056">GEDI L4A Footprint Level Aboveground Biomass Density</a> and <a href="https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2299">GEDI L4B Gridded Aboveground Biomass Density</a>.

  • Categories    

    This dataset contains spatial layers describing Forest Connectivity from 1995-2019, in NSW Regional Forest Agreements (RFA) Areas along the eastern coast. Forest Connectivity accounts for the general quality of terrestrial habitats supporting biodiversity at each location, the fragmentation of habitat within its neighbourhood and how its position in the landscape contributes to connectivity among the habitats across a region. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2020). These base grids are Landsat in origin and have a resolution of 25m. <br> Forest Connectivity, including canopy cover connectivity and fragmentation is concerned and linked to forest condition. Concepts applied are to be aligned with definitions as found in the NSW Biodiversity Indicator Program (BIP) and the Spatial Links methodology for calculating connectivity.<br> Base cover extent grids used are from the NSW RFA Historic Forest Canopy Cover Extent – 1995 to 2019 product. <br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/accordion-content-main/fmip-ecosystemhealth-projectfe1<br> This dataset is superseded by 'NSW Forest Monitoring and Improvement Program State-Wide Historic Forest Connectivity - 1995 to 2020'

  • Categories    

    Statewide composite of fire scars (burnt area) derived from all available Sentinel-2 images acquired over Queensland. It is available in both monthly and annual composites. Fire scars have been mapped using an automated change detection method, with supplementary manual interpretation. This data contains both automated and manually edited data.

  • Categories    

    The spatial layers in this dataset detail forest connectivity over NSW. Forest Connectivity accounts for the general quality of terrestrial habitats supporting biodiversity at each location, the fragmentation of habitat within its neighbourhood and how its position in the landscape contributes to connectivity among the habitats across a region. <br> Forest canopy cover connectivity and fragmentation is concerned and linked to forest condition. Concepts applied are to be aligned with definitions as found in the Biodiversity Indicator Program (BIP) and the Spatial Links methodology for calculating connectivity. <br> Base cover extent grids used are from the NSW Forest Monitoring and Improvement Program Statewide Historic Forest Cover Extent – 1995 to 2020 product. These have been processed through a series of land use and vegetation type exclusion masking and a through a fuzzy-logic based certainty analysis to reflect a forest cover extent coverage for NSW that is reflective of past and current coverage.<br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/accordion-content-main/fmip-ecosystemhealth-projectfe1<br> This dataset supersedes "NSW Forest Monitoring and Improvement Program RFA Historic Forest Connectivity – 1995 to 2019". https://portal.tern.org.au/metadata/TERN/fef2d61b-7c5e-42be-88c1-849a3fc6a70a.

  • Categories    

    Version 1 of the Brigalow Belt Bioregion Spatial BioCondition dataset is superseded by the Version 2 dataset that can be found at: https://doi.org/10.25901/rnqz-cn10.<br><br> Version 1 was an initial demonstration version. The version 1 data has been removed from publication to negate temporal comparisons between v1 (2019) and v2 (2021), as this is a future goal for the product but still in development phase. This was a spatial dataset comprising predictions of vegetation condition for biodiversity for the brigalow belt bioregion. The dataset was created using a gradient boosting decision tree (GBDT) model based on eight vegetation specific remote sensing (RS) datasets and 17,000 training sites of known vegetation community and condition state. Condition score was modelled as a function of the difference in the RS space within homogeneous vegetation communities. The product was intended to represent predicted BioCondition for year 2019 rather than any single date.

  • Categories    

    The spatial layers in this dataset detail forest cover extent over NSW. They have been created for the NSW Natural Resources Commission to detail historic baseline and trends of forest cover extent coverage for NSW for all land tenures, including all RFAs and IFOAs. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2021). These base grids are Landsat in origin and have a resolution of 25m. <br> These base grids have been processed through a series of land use and vegetation type exclusion masking and a through a fuzzy-logic based certainty analysis to reflect a forest cover extent coverage for NSW that is reflective of past and current coverage. <br> These grids cover the years from 1995 to 2020. The year gaps are triennial or biennial data layers from 1995 to 2004. 1996,1997,1999,2001,2003 years missing as these were not assessed in original applied database. From 2004 to 2020 data layers become annualised.<br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/accordion-content-main/fmip-ecosystemhealth-projectfe1<br> This dataset supersedes "NSW Forest Monitoring and Improvement Program RFA Historic Forest Cover Extent – 1995 to 2019". https://portal.tern.org.au/metadata/TERN/fef2d61b-7c5e-42be-88c1-849a3fc6a70a.