Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). <br /> <br /> Located in a 5 km<sup>2</sup> block of relatively uniform open-forest savanna, the site is representative of high rainfall, frequently burnt tropical savanna. <br /><br /> Tropical savanna in Australia occupies 1.9 million km<sup>2</sup> across the north and given the extent of this biome, understanding biogeochemical cycles, impacts of fire on sequestration, vegetation and fauna is a national priority. In the NT, savanna ecosystems are largely intact in terms of tree cover, with only modest levels of land use change. Despite this, there is evidence of a loss of biodiversity, most likely due to shifts in fire regimes and a loss of patchiness in the landscape. Approximately 40 % of the savanna burn every year and understanding fire impacts on fauna and flora is essential for effective land management. <br /><br />
-
Annual radiation of driest month for the Australian continent. Modelled by using ANUSPLIN Version 4.5 to fit trivariate thin plate smoothing spline functions of longitude, latitude and vertically exaggerated elevation. Station elevations were 0.05 degree local averages of grid values from the GEODATA 9 second DEM version 3 as provided by eMAST_ANUClimate_fx_el05_v1m0.
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br> The Arcturus greenhouse gas (GHG) monitoring station was established in July 2010, 48 km southeast of Emerald, Queensland. Flux tower measurements were carried out from June 2011 to early 2014. The station was part of a collaborative project between Geoscience Australia (GA) and CSIRO Marine and Atmospheric Research (CMAR). The elevation of the site is approximately 170 m asl and mean annual precipitation is 572 mm. The tower bordered 2 land use types to the west lightly forested tussock grasslands; to the east crop lands, cycling through fallow periods. The instruments were installed on a square lattice tower with an adjustable pulley lever system to raise and lower the instrument arm. The tower was 5.6 m tall with the instrument mast extending a further 1.1 m above, totalling a height of 6.7 m. Fluxes of heat, water vapour, methane and carbon dioxide were measured using the open-path eddy flux technique. Supplementary measurements above the canopy included temperature, humidity, windspeed, wind direction, rainfall, and the four components of net radiation. Soil heat flux, soil moisture and soil temperature measurements were also collected. <br />
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.15) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Ti Tree East site was established in July 2012 and is managed by the University of Technology Sydney. Pine Hill Station is a functioning cattle station that has been in operation for longer than 50 years. However, the east side has not been stocked in over three years. The site is a mosaic of the primary semi-arid biomes of central Australia: grassy mulga woodland and <em>Corymbia/Triodia</em> savanna.The woodland is characterised by a mulga (<em>Acacia aneura</em>) canopy, which is 4.85 m tall on average. The soil is red sand overlying an 8 m deep water table. Elevation of the site is 553 m above sea level, and the terrain is flat. Mean annual precipitation at the nearby (30 km to the south) Bureau of Meteorology station is 305.9 mm but ranges between 100 mm in 2009 to 750 mm in 2010. Predominant wind directions are from the southeast and east.</br> <br>The instrument mast is 10 m tall. Fluxes of heat, water vapour and carbon are measured using the open-path eddy covariance technique at 9.81 m. Supplementary measurements above the canopy include temperature and humidity (9.81 m), windspeed and wind direction (8.28 m), downwelling and upwelling shortwave and longwave radiation (9.9 m). Precipitation is monitored in the savanna (2.5 m). Supplementary measurements within and below the canopy include barometric pressure (2 m). Below ground soil measurements are made beneath Triodia, mulga and grassy understorey and include ground heat flux (0.08 m), soil temperature (0.02 m - 0.06 m) and soil moisture (0 - 0.1 m, 0.1 - 0.3 m, 0.6 - 0.8 m and 1.0 - 1.2 m).</br>
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The site is classified as box woodland, dominated by two main eucalypt species: <em>Eucalyptus microcarpa</em> (grey box) and <em>Eucalyptus leucoxylon</em> (yellow gum). The site has an elevation of 165 m. Mean annual precipitation measured by the nearby Bureau of Meteorology site is 558 mm. Maximum temperatures range from 12.6 °C (in July) to 29.8 °C (in January), while minimum temperatures range from 3.2 °C (in July) to 14.2 °C (in February). Maximum temperatures vary on a seasonal basis by approximately 17.2 °C and minimum temperatures by 11.0 °C.</br> <br>The instrument mast is 36 m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.</br>
-
NSW Office of Environment and Heritage Macarthur Forest Fire Danger index. Modelled fire frequency projections at ~50km resolution for 1990-2009 period using CCCMA3.1 and R2 ensemble member using the WRF 3.3 model. This product will provide policy makers, land managers and researchers access to accurate and temporally fine scaled information with which to make hazard reduction and management strategies.
-
NSW Office of Environment and Heritage Macarthur Forest Fire Danger index. Modelled fire frequency projections at ~10km resolution for 2060-2079 period using CCCMA3.1 and R1 ensemble member using the WRF 3.3 model. This product will provide policy makers, land managers and researchers access to accurate and temporally fine scaled information with which to make hazard reduction and management strategies.
-
NSW Office of Environment and Heritage Macarthur Forest Fire Danger index. Modelled fire frequency projections at ~10km resolution for 2060-2079 period using CSIRO-MK3.0 and R3 ensemble member using the WRF 3.3 model. This product will provide policy makers, land managers and researchers access to accurate and temporally fine scaled information with which to make hazard reduction and management strategies.
-
NSW Office of Environment and Heritage Macarthur Forest Fire Danger index. Modelled fire frequency projections at ~10km resolution for 2020-2039 period using CSIRO-MK3.0 and R1 ensemble member using the WRF 3.3 model. This product will provide policy makers, land managers and researchers access to accurate and temporally fine scaled information with which to make hazard reduction and management strategies.
-
Monthly number of days less than 0 degrees Celsius for the Australian continent. Modelled using eMAST-R-Package 2.0.