geoscientificInformation
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
<p>Soil is a huge carbon (C) reservoir, but where and how much extra C can be stored is unknown. Here, using 5089 observations, we estimated that the uppermost 30 cm of Australian soil holds 13 Gt (10–18 Gt) of mineral-associated organic carbon (MAOC). Using a frontier line analyses, described in Viscarra Rossel et al. (2023), we estimated the maximum amounts of MAOC that Australian soils could store in their current environments, and calculated the MAOC deficit, or C sequestration potential. We propagated the uncertainties from the frontier fitting and mapped the estimates of these values over Australia using machine learning and kriging with external drift (KED). The maps show regions where the soil is more in MAOC deficit and has greater sequestration potential. The modelling shows that the variation over the whole continent is determined mainly by climate, linked to vegetation, and soil mineralogy. We find that the MAOC deficit in Australian soil is 40 Gt (25–60 Gt). The deficit in the vast rangelands is 20.84 Gt (13.97–29.70 Gt) and the deficit in cropping soil is 1.63 Gt (1.12–2.32 Gt). Our findings suggest that the C sequestration potential of Australian soil is limited by climate.
-
This is Version1 of the Australian Soil Organic Carbon product of the Soil and Landscape Grid of Australia at 30 m resolution.<br /><br /> The map gives a modeled estimate of the spatial distribution of total organic carbon in soils across Australia.<br /><br /> <p>The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and 100-200 cm. These depths are consistent with the specifications of the GlobalSoilMap.net project- https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels).</p> Detailed information about the Soil and Landscape Grid of Australia can be found at - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html">SLGA</a><br /><br /> <ul style="list-style-type: disc;"><li>Attribute Definition: Mass fraction of carbon by weight in the < 2 mm soil material as determined by dry combustion at 900 Celsius;</li> <li>Units: %;</li> <li>Period (temporal coverage; approximately): 1970-2021;</li> <li>Spatial resolution: 1 arc seconds (approx 30 m);</li> <li>Total number of gridded maps for this attribute: 18;</li> <li>Number of pixels with coverage per layer: 2007M (49200 * 40800);</li> <li>Target data standard: GlobalSoilMap specifications;</li> <li>Format: Cloud Optimised GeoTIFF.</li></ul>
-
This is Version 2 of the Australian soil pH (CaCl<sub>2</sub>) product of the Soil and Landscape Grid of Australia.<br><br> It supersedes the Release 1 product that can be found at https://doi.org/10.4225/08/546F17EC6AB6E<br><br> The map gives a modelled estimate of the spatial distribution of the pH of soils across Australia.<br><br> The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and 100-200 cm. These depths are consistent with the specifications of the GlobalSoilMap.net project. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). An additional measure of model reliability is through assessment of model extrapolation risk. This measure provides users a spatial depiction where model estimates are made within the domain of the observed data or not.<br><br> Detailed information about the Soil and Landscape Grid of Australia can be found at - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html">SLGA</a><br><br> - Total number of gridded maps for this attribute: 24.<br> - Number of pixels with coverage per layer: 2007M (49200 * 40800).
-
This is Version 1 of the Soil Coarse Fragments product of the Soil and Landscape Grid of Australia.<br></br> <p>The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and 100-200 cm. These depths are consistent with the specifications of the GlobalSoilMap.net project - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf">GlobalSoilMaps</a>. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels).</p> These maps are generated using Digital Soil Mapping methods.<br></br> Detailed information about the Soil and Landscape Grid of Australia can be found at - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html">SLGA</a><br></br> <ul style="list-style-type: disc;"><li>Attribute Definition: Soil Coarse Fragments Class Probabilities as defined in the Australian Soil and Land Survey Field Handbook (Units: Probability of CF class occurring);</li> <li>Period (temporal coverage; approximately): 1950-2022;</li> <li>Spatial resolution: 3 arc seconds (approximately 90 m);</li> <li>Total number of gridded maps for this attribute: 18;</li> <li>Number of pixels with coverage per layer: 2007M (49200 * 40800);</li> <li>Total size before compression: about 8GB;</li> <li>Total size after compression: about 4GB;</li> <li>Format: Cloud Optimised GeoTIFF.</li>
-
This is Version 2 of the Australian Available Volumetric Water Capacity (AWC) product of the Soil and Landscape Grid of Australia.<br></br> The map gives a modelled estimate of the spatial distribution of AWC soil hydraulic property in soils across Australia.<br></br> The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and 100-200 cm. These depths are consistent with the specifications of the GlobalSoilMap.net project - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf">GlobalSoilMaps</a>. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels).<br><br> Detailed information about the Soil and Landscape Grid of Australia can be found at - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html">SLGA</a><br /><br /> <ul style="list-style-type: disc;"><li>Attribute Definition: Available Volumetric Water Capacity (Units: percent);</li> <li>Period (temporal coverage; approximately): 1950-2021;</li> <li>Spatial resolution: 3 arc seconds (approx. 90 m);</li> <li>Total number of gridded maps for this attribute: 18;</li> <li>Number of pixels with coverage per layer: 2007M (49200 * 40800);</li> <li>Target data standard: GlobalSoilMap specifications;</li> <li>Format: Cloud Optimised GeoTIFF</li></ul>
-
This is Version 2 of the Australian Total Soil Phosphorus product of the Soil and Landscape Grid of Australia.<br></br> It supersedes the Release 1 product that can be found at https://doi.org/10.25919/7j78-md43<br></br> The map gives a modelled estimate of the spatial distribution of total phosphorus in soils across Australia.<br></br> The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and 100-200 cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). An additional measure of model reliability is through assessment of model extrapolation risk. This measure provides users a spatial depiction where model estimates are made within the domain of the observed data or not.<br></br> Detailed information about the Soil and Landscape Grid of Australia can be found at - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html">SLGA</a><br /><br /> <ul style="list-style-type: disc;"><li>Attribute Definition: Total soil phosphorus;</li> <li>Units: % (percentage of fine soil mass);</li> <li>Period (temporal coverage; approximately): 1950-2021;</li> <li>Spatial resolution: 3 arc seconds (approx 90m);</li> <li>Total number of gridded maps for this attribute: 24;</li> <li>Number of pixels with coverage per layer: 2007M (49200 * 40800);</li> <li>Data license : Creative Commons Attribution 4.0 (CC BY);</li> <li>Target data standard: GlobalSoilMap specifications;</li> <li>Format: Cloud Optimised GeoTIFF;</li></ul>
-
This is Version 2 of the Australian Soil Silt Content product of the Soil and Landscape Grid of Australia.<br><br> It supersedes the Release 1 product that can be found at https://doi.org/10.4225/08/546F48D6A6D48<br><br> The map gives a modelled estimate of the spatial distribution of silt in soils across Australia.<br><br> The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels).<br><br> Detailed information about the Soil and Landscape Grid of Australia can be found at - https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html<br><br> <ul style="list-style-type: disc;"><li>Attribute Definition: 2-20 um mass fraction of the < 2 mm soil material determined using the pipette method;</li> <li>Units: %;</li> <li>Period (temporal coverage; approximately): 1950-2021;</li> <li>Spatial resolution: 3 arc seconds (approx 90m);</li> <li>Total number of gridded maps for this attribute: 18;</li> <li>Number of pixels with coverage per layer: 2007M (49200 * 40800);</li> <li>Data license : Creative Commons Attribution 4.0 (CC BY);</li> <li>Target data standard: GlobalSoilMap specifications;</li> <li>Format: Cloud Optimised GeoTIFF;</li></ul>
-
This is Version 1 of the Australian 15 Bar Lower Limit Volumetric Water Content (L15) product of the Soil and Landscape Grid of Australia.<br><br> The map gives a modelled estimate of the spatial distribution of 15 Bar Lower Limit Volumetric Water Content in soils across Australia.<br><br> The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and 100-200 cm. These depths are consistent with the specifications of the <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf">GlobalSoilMap.net project</a>. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels).<br><br> Detailed information about the Soil and Landscape Grid of Australia can be found at - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html">SLGA</a>.<br><br> <ul style="list-style-type: disc;"> <li>Attribute Definition: 15 Bar Lower Limit Volumetric Water Content;</li> <li>Units: percent;</li> <li>Period (temporal coverage; approximately): 1950-2021;</li> <li>Spatial resolution: 3 arc seconds (approx 90 m);</li> <li>Total number of gridded maps for this attribute: 18;</li> <li>Number of pixels with coverage per layer: 2007M (49200 * 40800);</li> <li>Data license : Creative Commons Attribution 4.0 (CC BY);</li> <li>Target data standard: GlobalSoilMap specifications;</li> <li>Format: Cloud Optimised GeoTIFF;</li></ul>
-
This map gives a modelled estimate of the spatial distribution of Pedogenon soil classes across Australia.<br><br> Pedogenon mapping is a method for stratifying the landscape (similar to soil-landscape units), which can be used to assess past soil change with a space-for-time substitution approach.<br><br> Pedogenon classes are a conceptual taxa that aim to define groups of homogeneous environmental variables. These groups are created applying unsupervised classification to a set of state variables, proxies of the soil-forming factors for a given reference time. The assumption is that the soil-forming processes within these classes (i.e., pedogenons) have been relatively similar over pedogenetic time and thus have developed soils with similar properties. Pedogenon classes can afterwards be divided into subclasses along a gradient from less (i.e., remnant pedogenons) to more anthropogenic pressure on soils (i.e., pedophenons), in an analogous way to the concept of genoform and phenoform (Rossiter and Bouma, 2018). The assessment of changes in soil condition can be done with a space for time substitution within and across pedogenon classes. The conceptualization and methodology for pedogenon mapping and using the classes as basis to assess changes in soil condition are explained with more detail in two publications (Román Dobarco et al., 2021a; Román Dobarco et al., 2021b).<br><br> Detailed information about the Soil and Landscape Grid of Australia can be found at - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html">SLGA</a>.<br><br> <ul style="list-style-type: disc;"> <li>Period (temporal coverage; approximately): 1950-2022;</li> <li>Spatial resolution: 3 arc seconds (approx 90 m);</li> <li>Number of pixels with coverage per layer: 2007M (49200 * 40800);</li> <li>Data license : Creative Commons Attribution 4.0 (CC BY);</li> <li>Target data standard: GlobalSoilMap specifications;</li> <li>Format: Cloud Optimised GeoTIFF;</li></ul>
-
This dataset contains predictions of the aboveground biomass density (AGBD) for Australia for 2020. Data were generated by the Global Ecosystem Dynamics Investigation (GEDI) NASA mission, which used a full-waveform LIDAR attached to the International Space Station to provide the first global, high-resolution observations of forest vertical structure. Data include both Level 4A (~25 m footprints) and Gridded Level 4B (1 km x 1 km) Version 2. The Australian portion of the data was extracted from the original global datasets <a href="https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2056">GEDI L4A Footprint Level Aboveground Biomass Density</a> and <a href="https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2299">GEDI L4B Gridded Aboveground Biomass Density</a>.
TERN Geospatial Catalogue