Topic
 

environment

311 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
From 1 - 10 / 311
  • Categories    

    This dataset contains UAS RGB and multispectral raw images and orthomosaics of Calperum plot SASRIV0001. The drone platform used was DJI Matrice 300 (M300) RTK. Two sensors were flown simultaneously: Zenmuse P1 (35 mm) RGB mapping camera and MicaSense RedEdge-MX Dual (10-band multispectral sensor). The RGB images were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 base station. In the processing workflow, the multispectral image positions (captured with navigation-grade accuracy) were interpolated using image timestamp and RGB image coordinates. Dense point clouds and the fine-resolution RGB smoothed surface were used to generate both the RGB (1 cm/pixel) and multispectral (5 cm/pixel) orthomosaics. rio-cogeo plugin was used to generate Cloud Optimised GeoTIFFs. Details of the data collection settings and processing workflow are described in further sections. Note on multispectral data: in the raw data image file suffixes correspond to bands - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge, 6: Coastal Blue, 7: Green 531, 8: Red 650, 9: RedEdge 705, 10: RedEdge 740. In the orthomosaic, the bands (1-10) are ordered by the Central Wavelength (Coastal Blue, Blue, Green 531, Green, Red 650, Red, RedEdge 705, RedEdge, RedEdge 740, NIR).

  • Categories    

    Two fractional cover decile products, green cover and total cover, are currently produced from the historical timeseries of seasonal fractional cover images. These products compare, at the per-pixel level, the level of cover for the specific season of interest against the long term cover for that same season. For each pixel, all cover values for the relevant seasons within a baseline period (1988-2013) are classified into deciles. The cover value for the pixel in the season of interest is then classified according to the decile in which it falls. This product is based upon the JRSRP Fractional Cover 3.0 algorithm.

  • Categories    

    This dataset consists of images of fauna, flora, fungi or general scenery or events captured at the site on an ad-hoc basis and may provide the researcher with information regarding the species that occupy, frequent or traverse this site.<br /> <br /> The 25 hectare site was established in 2009 and lies on the Atherton Tablelands in the wet tropical rainforests of Australia at 680-740 m elevation. It is situated in Danbulla National Park within the Wet Tropics World Heritage Area. The forest is classified as Regional Ecosystem (RE) 7.3.36a, complex mesophyll vine forest (Queensland Government 2006). The climate is seasonal with approximately 60% of rain falling between January and March and the landform is moderately inclined with a low relief. There are 208 species in the site, and average canopy height is 28 m, ranging from 23 to 44 m. All stems ≥ 10 cm diameter are measured, tagged and mapped. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/robson-creek-rainforest-supersite/ . <br /><br /> Other bioimages collected at the site include digital hemispherical photography, phenocam images taken from fixed under and overstorey cameras and ancillary images of fauna and flora.<br /><br /> <iframe src="https://www.google.com/maps/embed?pb=!4v1529548392873!6m8!1m7!1sCAoSLEFGMVFpcE51SVhqcTZFVmh4dEQ4QlowbkxYZGVMT1J3QjlEVlJZRGZiTWFV!2m2!1d-17.119256!2d145.631933!3f60.05!4f-9.040000000000006!5f0.41007199324273763" title="Photosphere view in the 25 ha plot at Robson Creek Rainforest SuperSite (photo M. Karan 2016)" style="height:248px;width:462px;"></iframe> <br />Photosphere view in the 25 ha plot at Robson Creek Rainforest SuperSite (photo M. Karan 2016)<br />

  • Categories    

    This dataset is a collection of drone RGB and multispectral imagery from plots across Australia (AusPlots, SuperSites, Cal/Val sites to be established in the future). Standardised data collection and data processing protocols are used to collect drone imagery and to generate orthomosaics. The protocols developed in 2022 are based on the DJI Matrice 300 (M300) RTK drone platform. DJI Zenmuse P1 and MicaSense RedEdge-MX/Dual sensors are used with M300 to capture RGB and multispectral imagery simultaneously. The data is georeferenced using the DJI D-RTK2 base station and onboard GNSS RTK. In the processing workflow, the multispectral image positions (captured with navigation-grade accuracy) are interpolated using image timestamp and RGB image coordinates. Dense point clouds and the fine-resolution RGB smoothed surface were used to generate co-registered RGB (1 cm/pixel) and multispectral (5 cm/pixel) orthomosaics. Mission-specific metadata for each plot is provided in the imagery/metadata folder. The Drone Data Collection and RGB and Multispectral Imagery Processing protocols can be found at <em> https://www.tern.org.au/field-survey-apps-and-protocols/ </em>.

  • Categories    

    This dataset contains UAS RGB and multispectral raw images and orthomosaics of Calperum plot SASMDD0008. The drone platform used was DJI Matrice 300 (M300) RTK. Two sensors were flown simultaneously: Zenmuse P1 (35 mm) RGB mapping camera and MicaSense RedEdge-MX (5-band multispectral sensor). The RGB images were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 base station. In the processing workflow, the multispectral image positions (captured with navigation-grade accuracy) were interpolated using image timestamp and RGB image coordinates. Dense point clouds and the fine-resolution RGB smoothed surface were used to generate both the RGB (1 cm/pixel) and multispectral (5 cm/pixel) orthomosaics. rio-cogeo plugin was used to generate Cloud Optimised GeoTIFFs. Details of the data collection settings and processing workflow are described in further sections. Note on multispectral data: in the raw data image file suffixes correspond to bands - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge. In the orthomosaic, the bands (1-5) are ordered by the Central Wavelength (Blue, Green, Red, RedEdge, NIR).

  • Categories    

    The NSW Carbon Monitoring project is a collaboration between the Natural Resources Commission of NSW and Mullion Group to develop a spatial time-series dataset of forest carbon history for the state of NSW at ~25m resolution. The project used FLINTpro software to integrate historical environmental and land management data to model carbon stock and fluxes. Aboveground biomass refers to the amount of carbon stored within aboveground forest components (pools) which includes leaves, branches, bark and stems. Belowground biomass refers to the amount of carbon stored within belowground forest components (pools) which includes coarse and fine roots. Dead Organic Matter refers to the amount of carbon stored within dead forest components (pools) which includes leaf litter, branch litter, bark litter, stem litter, and dead roots. Carbon stored within soil and harvested wood products is not included within any of these datasets.

  • Categories    

    This dataset contains UAV RGB imagery collected as part of a field trial to test the Uncrewed Aerial System to be used for the TERN Drone project. The UAS platform is DJI Matrice 300 RTK with 2 sensors: Zenmuse P1 (35 mm) RGB mapping camera and Micasense RedEdge-MX (5-band multispectral sensor). P1 imagery were georeferenced using the onboard GNSS in M300 and the D-RTK 2 Mobile Station. Camera positions were post-processed using <a href="https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos">AUSPOS</a>. The flight took place between 14:00 and 14:08 at a height of 80m with a flying speed set to 5 m/s. Forward and side overlaps of photographs were set to 80%. <br><br> Agisoft Metashape was used to generate this RGB orthomosaic (resolution 1 cm). This cloud optimised GeoTIFF was created using rio command line interface. The coordinate reference system of the orthomosaic is EPSG 7855 - GDA2020 MGA Zone 55.

  • Categories    

    This dataset contains UAV RGB imagery collected as part of a field trial to test the Uncrewed Aerial System to be used for the TERN Drone project. The UAS platform is DJI Matrice 300 RTK with 2 sensors: Zenmuse P1 (35 mm) RGB mapping camera and Micasense RedEdge-MX Dual (10-band multispectral sensor). P1 imagery were georeferenced using the onboard GNSS in M300 and the D-RTK 2 Mobile Station. Camera positions were post-processed using <a href="https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos">AUSPOS</a>. Flight conducted between 10:26 am and 10:47 am AEDT at flying height 80 m, forward and side overlap set to 80%. <br><br> RGB orthomosaic (resolution: 1 cm. CRS: EPSG 7855 - GDA2020 MGA Zone 55) generated using Agisoft Metashape Professional, and a cloud optimised GeoTIFF was created using rio command line interface.

  • Categories    

    This dataset list soil characteristics observed in Rangeland sites across Australia by the TERN Surveillance Monitoring team, using standardised AusPlots methodologies. <br /> Soil observations are recorded at each site as part of the AusPlots <a href="http://linked.data.gov.au/def/ausplots-cv/dbd0b3ef-c9e6-42d9-9e40-53ff4733fe64">Soil and Landscapes</a> method. Observations on the soil surface conditions are recorded as part of the Ausplots <a href="http://linked.data.gov.au/def/ausplots-cv/74615bb8-9cc5-4a63-868b-3258108ffcb4">Plot description</a> method.<br />

  • Categories    

    <p>This dataset contains audio files for Alice Mulga SuperSite. Alice Mulga SuperSite was established in 2010 at Pine Hill Cattle Station with research plots located in low open woodland mulga (<em>Acacia aneura</em>) and non-acacia, hummock grassland, and river red gum forest. The core 1 ha plot is located in a dense mulga woodland (cover 70–80%). For additional site information, see <a href="https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/alice-mulga-supersite">Alice Mulga SuperSite</a></p> <p>In 2013 an acoustic recorder was set up in mulga woodland to collect audio data for a total of 12 hours per day, split between six hours around dawn and six hours around dusk. The recording schedule aimed at capturing morning and evening bird choruses while minimizing memory and battery requirements. A long-term spectrogram has been generated for each audio file to aid in data exploration. The sensor also recorded temperature, minimum- maximum- and mean-sound pressure levels.</p> <p>Acoustic indices and false colour spectrograms were created for the recordings. Acoustic indices are summaries of the distribution of the acoustic energy in a recording. They are particularly useful for the analysis of long-term recordings of the environment and can be used to identify sound sources of interest, characterise the soundscape, aid in the assessment of fauna biodiversity, monitor temporal trends and track environmental changes. False colour spectrograms are visual representation of individual acoustic indices or combination of multiple indices. They can highlight the presence of specific sound sources, e.g. birds, insects or weather events, providing a tool for navigating long-term recordings.</p> <p>Data are made available through the data link. For downloading large amount of data, please follow these instructions <a href="https://ternaus.atlassian.net/wiki/spaces/TERNSup/pages/2530148353/How+to+download+TERN+s+acoustic+data+in+bulk">How to download TERN's acoustic data in bulk</a></p>