Topic
 

climatologyMeteorologyAtmosphere

276 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
From 1 - 10 / 276
  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.15) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The Yarramundi Control Paddock site is located near Richmond, NSW (GPS coordinates -33.613469, 150.734864). The site is about 1&nbsp;km east of the Cumberland Plain Woodland flux tower. The climate is warm-temperate, with annual rainfall averaging 728&nbsp;mm, mean maximum temperature in January of 30.4&deg;C and mean minimum temperature in July of 3.6&deg;C (BOM station 067105). The elevation of the site is about 20&nbsp;m asl and the topography is flat. The soil is sandy loam in texture, organic carbon content is <1% nutrient availability is very low in the top 10&nbsp;cm; iron concretions below 50&nbsp;cm indicate poor drainage at times. The vegetation canopy is less than 1&nbsp;m tall, and the plant community is dominated by exotic herbaceous perennials, including <em>Conyza sumatrensis</em>, <em>Setaria parviflora</em>, <em>Cynodon dactylon</em>, <em>Commelina cyanea</em>, <em>Senecio madagascariensis</em>, and <em>Eragrostis curvula</em>. <br /> <br> Fluxes of water vapour, carbon dioxide and heat are quantified with the open-path eddy flux technique from a 2.5&nbsp;m tall mast. Additional measurements above the canopy include temperature, humidity, rainfall and net radiation, and photographs are taken several times per day to track canopy greenness.</br>

  • Categories    

    Data on weather conditions at the Great Western Woodlands site collected between 2012 - 2016. Data includes half-hourly records of radiation and net radiation at 3 m (2012) and 36 m (2013 - 2016), mean wind speed and wind direction at 3 m (2012) and 36 m (2013 - 2016), air temperature and relative humidity at 3 m (2012) and 36 m (2013 - 2016), atmospheric pressure at 3 m (2012) and 36 m (2013 - 2016), ground heat flux at -8cm, and rainfall at 0.5m

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The site was identified as tropical pasture dominated by species <em>Chamaecrista rotundifolia</em> (Round-leaf cassia cv. Wynn), <em>Digitaria milijiana</em> (Jarra grass) and <em>Aristida sp.</em> standing at approximately 0.3m tall. The soil at the site was a mixture of red kandosol and deep sand. Elevation of the site was close to 70m and mean annual precipitation at a nearby Bureau of Meteorology site was 1250mm. Maximum temperatures ranged from 37.5°C (in October) to 31.2°C (in June), while minimum temperatures ranged from 12.6°C (in July) to 23.8°C (in January). Maximum temperatures varied on a seasonal basis between 6.3°C while minimum temperatures varied by 11.2°C. <br /> <br /> The instrument mast was 15 meters tall. Heat, water vapour and carbon dioxide measurements were taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation were measured. <br />Ancillary measurements taken at the site included LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008. <br /> The site was destroyed by fire in September 2013. <br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The site is located on a low lying plain dominated by Mitchell Grass (<em>Astrebla</em> spp.). Elevation of the site is close to 250&nbsp;m and mean annual precipitation at a nearby Bureau of Meteorology site is 640&nbsp;mm. Maximum temperatures range from 28.4&nbsp;°C (in June/ July) to 39.1&nbsp;°C (in December), while minimum temperatures range from 11.2&nbsp;°C (in July) to 24.4&nbsp;°C (in December).</br> <br>The instrument mast is 5&nbsp;m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall and net radiation are measured. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.</br> <br>Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, nitrogen and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out at the site in September 2008. Biomass harvest measured: mean live biomass 0.00&nbsp;gm<sup>-2</sup> (standard error: 0.00), mean standing dead biomass 163.42&nbsp;gm<sup>-2</sup> (standard error: 16.73), mean litter biomass 148.99&nbsp;gm<sup>-2</sup> (standard error: 21.32), total mean biomass 312.40&nbsp;gm<sup>-2</sup> (standard error: 30.80). Soil consists of: clay 14.47%, silt 51.23%, sand 34.30%.</br>

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Robson Creek site is part of the FNQ Rainforest Site along with affiliated monitoring sites at Cape Tribulation (Daintree Rainforest Observatory) and Cow Bay (Daintree Discovery Centre). The flux station is located at the foothills of the Lamb Range, part of the Wet Tropics World Heritage Area, and north-west of a 25 hectare census plot established by CSIRO in 2012. <br /> The forest is classified as Regional Ecosystem (RE) 7.3.36a, complex mesophyll vine forest (Queensland Government 2006). There are 211 species in the adjacent 25ha plot, and average tree height is 28m, ranging from 23 to 44 m. Elevation of the site is 711m and mean annual precipitation is 2000mm. The upland rainforests of the Atherton Tablelands are some of the most biodiverse and carbon dense forests in Australia. The landform of the 25ha plot which is in the dominant wind direction from the station is moderately inclined with a low relief, a 30 m high ridge running north/south through the middle of the plot and a 40 m high ridge running north/south on the eastern edge of the plot. <br /><br /> The instruments are mounted on a free standing station at 40m. Fluxes of heat, water vapour and carbon dioxide are measured using the open-path eddy flux technique. Supplementary measurements above the canopy include temperature, humidity, windspeed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation. <br /><br />Note: Level 3 data for 2015 - 2018 were updated in 2018 correcting a rainfall issue in 2015 and a wind direction issue 2016 - 2018. A data gap from 2019-02-14 - 2019-02-21 was due to a major power supply failure.

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in woodland savanna using eddy covariance techniques.<br /><br /> The site is woodland savanna with an overstory co-dominated by tree species <em>E. tetrodonta</em>, <em>C. latifolia</em>, <em>Terminalia grandiflora</em>, <em>Sorghum sp.</em> and <em>Heteropogon triticeus</em>. Average canopy height measures 16.4 m. <br />Elevation of the site is close to 110m and mean annual precipitation at a nearby Bureau of Meteorology site is 1170mm. Maximum temperatures range from 37.5°C (in October) to 31.2°C (in June), while minimum temperatures range from 12.6°C (in July) to 23.8°C (in January). Maximum temperatures range seasonally by 6.3°C and minimum temperatures by 11.2°C. <br /><br />The instrument mast is 23 meters tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy.<br />Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008. <br /><br />This data is also available at http://data.ozflux.org.au .

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer from bare earth using eddy covariance techniques.<br /><br /> This is a topographically flat area, primarily comprised of the following soil types: sandy loams, scattered clays, red brown earths, transitional red brown earth, sands over clay and deep sands. Stream valleys and layered soil and sedimentary materials are found across the landscape. <br /><br /> The flux station tower extends to 20m, however flux measurements are recorded from slightly lower than this. Mean annual precipitation from a nearby Bureau of Meteorology site measured 465 mm. Maximum temperatures ranged from 37.4°C (in January) to 16.6°C (in July), while minimum temperatures ranged from 29.0°C (in January) to 11.8°C (in July). Maximum temperatures varied on a seasonal basis by approximately 20.8°C and minimum temperatures by 17.2°C. <br /> The site is within a wider research area (60 x 60 km) that supports a network of flux stations, which have been in operation since late 2001 onwards.<br /><br /> This data is also available at http://data.ozflux.org.au .

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> <em>Eucalyptus obliqua</em> forests dominate the vegetation below 650 m where they exist as fire-maintained communities. On fertile soils these forests attain mature heights in excess of 55m: the tallest <em>E. obliqua</em>reaches a height of 90m. The flux station is installed in a stand of tall, mixed-aged <em>E.obliqua</em> forest (77 and >250 years-old) with a rainforest understorey and a dense man-fern (<em>Dicksonia antarctica</em>) ground-layer, on a small flat of elevation 100 m adjacent to the Huon River. The understorey vegetation progresses from wet sclerophyll (dominated by <em>Pomaderris apatala</em> and <em>Acacia dealbata</em>) to rainforest (dominated by <em>Nothofagus cunninghamii</em>, <em>Atherosperma moschatum</em>, <em>Eucryphia lucida</em> and <em>Phyllocladus aspleniifolius</em>) with increasing time intervals between fire events. The site supports prodigous quantities of coarse woody debris as is characteristic of these fire-maintained eucalypt forests on fertile sites in southern Tasmania. <br />The soil at the flux site is derived from Permian mudstone and has a gradational profile with a dark brown organic clayey silt topsoil overlying a yellow brown clay. <br />The climate of Warra is classified as temperate with a mild summer and no dry season. Mean annual precipitation is 1700 mm with a relatively uniform seasonal distribution. Summer temperatures peak in January (min. 8.4°C – max 19.2°C) with winter temperatures reaching their lowest in July (min 2.6°C – max 8.4°C).<br /><br />The instruments are mounted at the top of an 80m tall guyed steel lattice tower. Supplementary measurements above the canopy include temperature, humidity, windspeed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation. An open-path gas analyser (EC150) was replaced by a closed-path gas analyser (EC155) at the end of Jan 2015.Soil moisture content is measured using Time Domain Reflectometry, while soil heat fluxes and temperature are also measured. Micro-meteorology (CO2, H2O, energy fluxes), meteorology (temp, humidity, wind speed and direction, rainfall) taken from the Warra Flux Site from 2013 to late 2016. Data incomplete due to ongoing problems since changing the open-path IRGA to a closed path system (CPEC200) during 2015. Soil data (moisture, heat flux, temp) complete for time period. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/warra-tall-eucalypt-supersite/ .<br><br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The Cumberland Plain flux station is located in a dry sclerophyll forest. The Cumberland Plain Woodland is now an endangered ecological community that encompasses distinct groupings of plants growing on clayey soils. The canopy is dominated by <em>Eucalyptus moluccana</em> and <em>Eucalyptus fibrosa</em>, which host an expanding population of mistletoe. Average canopy height is 23&nbsp;m, the elevation of the site is 20&nbsp;m and mean annual precipitation is 800&nbsp;mm. Fluxes of water vapour, carbon dioxide and heat are quantified with the open-path eddy flux technique from a 30&nbsp;m tall mast. Additional measurements above the canopy include temperature, humidity, wind speed and direction, rainfall, incoming and reflected shortwave and longwave radiation and net, diffuse and direct radiation and the photochemical reflectance index. In addition, profiles of humidity and CO<sub>2</sub> are measured at eight levels within the canopy, as well as measurements of soil moisture content, soil heat fluxes, soil temperature, and 10&nbsp;hr fuel moisture dynamics. In addition, regular monitoring of understory species abundance, mistletoe infection, leaf area index and litterfall are also performed.

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Cow Bay flux station was established in December 2008 and managed by James Cook University. The forest is classified as complex mesophyll vine forest, there are 94 species in the core 1Ha, and average tree height is 22m. Elevation of the site is 90m and mean annual precipitation is 3935mm. The Daintree Rainforest is one of the most biodiverse forests in Australia.The instruments are mounted on a walk-up tourist tower at 35m. Fluxes of heat, water vapour and carbon dioxide are measured using the open-path eddy flux technique. Supplementary measurements above the canopy include temperature, humidity, windspeed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation.The early years 2009 - 12 had several data gaps. Shadowing of the radiometric equipment continues to cause artifacts on the radiometers - these can be seen as reduction in downwelling radiation with solar inclination. The site is part of the FNQ Rainforest SuperSite - associated with the Daintree node, which is part of the TERN Australian SuperSite Network (ASN). <br/> For additional site information, see https://supersites.tern.org.au/supersites/fnqr-daintree .<br />