SOILS
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
-
The soil in terrestrial and blue carbon ecosystems (BCE; mangroves, tidal marshes, seagrasses) is a significant carbon (C) sink. National assessments of C inventories are needed to protect them and aid nature-based strategies to sequester atmospheric carbon dioxide. We harmonised measurements from Australia's terrestrial and BCE and, using consistent multi-scale spatial machine learning, unravelled the drivers of soil organic carbon (SOC) variation and digitally mapped their stocks. The modelling shows that climate and vegetation are continentally the primary drivers of SOC variation. But the underlying regional drivers are ecosystem type, terrain, clay content, mineralogy, and nutrients. The digital soil maps indicate that in the 0-30 cm soil layer, terrestrial ecosystems hold 27.6 Gt (19.6-39.0 Gt), and BCE 0.35 Gt (0.20-0.62 Gt). Tall open eucalypt and mangrove forests have the largest mean SOC per unit area. Eucalypt woodlands and hummock grassland, which occupy vast areas, store the largest total SOC stock. These ecosystems constitute important regions for conservation, emissions avoidance, and preservation because they also provide additional co-benefits.
-
This is Version 1 of the Soil Coarse Fragments product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. This product contains six digital soil attribute maps for each of three depth intervals, 0-5cm, 5-15cm, 15-30cm These depths are consistent with the specifications of the GlobalSoilMap.net project http://www.globalsoilmap.net/. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). These maps are generated using Digital Soil Mapping methods Attribute Definition: Soil Coarse Fragments Class Probabilities as defined in the Australian Soil and Land Survey Field Handbook Units: Probability of CF class occurring; Period (temporal coverage; approximately): 1950-2022; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Format: Cloud Optimised GeoTIFF.
-
This dataset list soil characteristics observed in Rangeland sites across Australia by the TERN Surveillance Monitoring team, using standardised AusPlots methodologies. <br /> Soil observations are recorded at each site as part of the AusPlots Soil and Landscapes method. Observations on the soil surface conditions are also recorded as part of the AusPlots Plot description method.<br />
-
This is Version 1 of the Soil Bacteria and Fungi Beta Diversity product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. These products provide estimates of the Beta Diversity of soil fungi and bacteria. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). These maps are generated using Digital Soil Mapping methods Attribute Definition: Soil Bacteria and Fungi Beta Diversity Units: NA; Period (temporal coverage; approximately): 1950-2022; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 6; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Format: Cloud Optimised GeoTIFF.
-
This is Version 1 of the Soil Organic Carbon Fractions product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. This product contains six digital soil attribute maps for each of three depth intervals, 0-5cm, 5-15cm, 15-30cm. These depths are consistent with the specifications of the GlobalSoilMap.net project http://www.globalsoilmap.net/. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). These maps are generated using Digital Soil Mapping methods Attribute Definition: Soil Organic Carbon Fractions :- mineral-associated organic carbon (MAOC), particulate organic carbon (POC) and pyrogenic organic carbon (PyOC) Units: Various; Period (temporal coverage; approximately): 1950-2022; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Format: Cloud Optimised GeoTIFF.
-
This is Version 1 of the Australian Soil Cation Exchange Capacity product of the Soil and Landscape Grid of Australia. The map gives a modelled estimate of the spatial distribution of cation exchange capacity in soils across Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). Detailed information about the Soil and Landscape Grid of Australia can be found at - https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html Attribute Definition: Cation Exchange Capacity Units: meq/100g; Period (temporal coverage; approximately): 1970-2022; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Data license : Creative Commons Attribution 4.0 (CC BY); Target data standard: GlobalSoilMap specifications; Format: Cloud Optimised GeoTIFF.
-
The MODIS Land Condition Index (LCI) is an index of total vegetation cover (green and non-photosynthetic vegetation ), and so is also an index of soil exposure. The LCI is a normalised difference index based on MODIS bands in the mid-infrared portion of the spectrum. The index is produced from 500-m MODIS nadir BRDF adjusted reflectance (NBAR) data. As with all products derived from passive remote sensing imagery, this product represents the world as seen from above. Therefore, the cover recorded by this product represent what would be observed from a birds-eye-view. Therefore, dense canopy may prevent observation of significant soil exposure.
-
RSMA measures change in the relative contributions of photosynthetic vegetation (PV, or GV green vegetation), non-photosynthetic vegetation (NPV) and soil reflectance compared to a baseline date. These spectral changes correspond to changes in fractional cover relative to the baseline date. Full details on the RSMA method are presented in Okin (2007). One of the key advantages of the RSMA, its insensitivity to changes in soil spectra, is a result of the fact that it does not require us to know the soil reflectance profile for a region. This strength is also the cause of a major weakness in RSMA. Since the measure is relative to a baseline date, and the absolute cover levels for every pixel are unknown at the baseline, the RSMA does not convey the absolute cover levels at any other point in time. However, if the absolute cover levels are known at any point in time, it is theoretically possible to convert the RSMA to absolute relative spectral mixture analysis (ARSMA).<br> As with all products derived from passive remote sensing imagery, this product represents the world as seen from above. Therefore, the cover recorded by this product represent what would be observed from a bird's-eye-view. Therefore, dense canopy may prevent observation of significant soil exposure.
-
This is Version 2 of the Australian Soil Organic Carbon product of the Soil and Landscape Grid of Australia. The map gives a modelled estimate of the spatial distribution of total organic carbon in soils across Australia. It supersedes the Release 1 product that can be found at https://doi.org/10.4225/08/547523BB0801A The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project - https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). Detailed information about the Soil and Landscape Grid of Australia can be found at - https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html Attribute Definition: Mass fraction of carbon by weight in the < 2 mm soil material as determined by dry combustion at 900 Celsius Units: %; Period (temporal coverage; approximately): 1970-2021; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Data license : Creative Commons Attribution 4.0 (CC BY); Target data standard: GlobalSoilMap specifications; Format: Cloud Optimised GeoTIFF
-
The Sentinel-2 seasonal fractional ground cover product shows the proportion of bare ground, green and non-green ground cover and is derived directly from the Sentinel-2 seasonal fractional cover product, also produced by Queensland's Remote Sensing Centre. The seasonal fractional cover product is a spatially explicit raster product, which predicts vegetation cover at medium resolution (10 m per-pixel) for each 3-month calendar season. However, the seasonal fractional cover product does not distinguish tree and mid-level woody foliage and branch cover from green and dry ground cover. As a result, in areas with even minimal tree cover (>15%), estimates of ground cover become uncertain. With the development of the fractional cover time-series, it has become possible to derive an estimate of ‘persistent green’ based on time-series analysis. The persistent green vegetation product provides an estimate of the vertically-projected green-vegetation fraction where vegetation is deemed to persist over time. These areas are nominally woody vegetation. This separation of the 'persistent green' from the fractional cover product, allows for the adjustment of the underlying spectral signature of the fractional cover image and the creation of a resulting 'true' ground cover estimate for each season. The estimates of cover are restricted to areas of <60% woody vegetation. Currently, the persistent green product has only been produced at 30 m pixel resolution based on Landsat imagery, resulting in this Sentinel-2 seasonal ground cover product having a medium 30 m pixel resolution also. This is an experimental product which has not been fully validated. This product is similar to the <a href="https://portal.tern.org.au/metadata/23884 ">Seasonal ground cover - Landsat, JRSRP algorithm Version 3.0, Australia Coverage</a> which is based on a different satellite sensor.