Keyword

30 meters - < 100 meters

64 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
From 1 - 10 / 64
  • Categories    

    This dataset lists land surface substrate characteristics observed in Rangeland sites across Australia by the TERN Surveillance Monitoring team, using standardised AusPlots methodologies. <br /> Land surface substrate observations are collected at each site as part of the AusPlots Point intercept method. At each site, observations on the substrate type (e.g. rock, coarse woody debris, litter) are recorded on transect laid out on the plots. These records form the basis for ground cover derivation, see the AusPlots Ground cover and Point intercept methods below.<br />

  • Categories    

    <p>Hemispherical photography has been collected across Australia to characterise plant canopy cover and structure, and to study leaf area index. Hemispherical photography is a technique for quantifying plant canopies via photographs captured through a digital camera with hemispherical or fisheye lens. Such photographs can be captured from beneath the canopy, looking upwards, (orientated towards zenith) or above the canopy looking downwards. These measurements have typically been collected in conjunction with the Statewide Landcover and Trees Study (SLATS) star transects field data together with plant canopy analysers such as LAI-2200 and CI-110.</p> <p>Data can be downloaded from https://field.jrsrp.com/ by selecting the combination Field and Hemispheric imagery. Photographs can be accesed through the right-hand side panel, or by finding the file_loc attribute in the csv file. </p>

  • Categories    

    This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product at https://portal.tern.org.au/metadata/24070. Two fractional cover decile products, green cover and total cover, are currently produced from the historical timeseries of seasonal fractional cover images. These products compare, at the per-pixel level, the level of cover for the specific season of interest against the long term cover for that same season. For each pixel, all cover values for the relevant seasons within a baseline period (1988 to 2013) are classified into deciles. The cover value for the pixel in the season of interest is then classified according to the decile in which it falls.

  • Categories    

    This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product at https://portal.tern.org.au/metadata/23885. An estimate of persistent green cover per season. This is intended to estimate the portion of vegetation that does not completely senesce within a year, which primarily consists of woody vegetation (trees and shrubs), although there are exceptions where non-woody cover remains green all year round. It is derived by fitting a multi-iteration minimum weighted smoothing spline through the green fraction of the seasonal fractional cover (dim) time series.

  • Categories    

    This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product here <a href="https://portal.tern.org.au/metadata/24072">Seasonal dynamic reference cover method - Landsat, JRSRP algorithm version 3.0, Queensland Coverage</a>. The seasonal dynamic reference cover method images are created using a modified version of the dynamic reference cover method developed by <a href="https://doi.org/10.1016/j.rse.2012.02.021">Bastin et al (2012)</a>. This approach calculates a minimum ground cover image over all years to identify locations of most persistent ground cover in years with the lowest rainfall, then uses a moving window approach to calculate the difference between the window's central pixel and its surrounding reference pixels. The output is a difference image between the cover amount of a pixel's reference pixels and the actual cover at that pixel for the season being analysed. Negative values indicate pixels which have less cover than the reference pixels. <br> The main differences between this method and the original method are that this method uses seasonal fractional ground cover rather than the preceding ground cover index (GCI) and this method excludes cleared areas and certain landforms (undulating slopes), which are considered unsuitable for use as reference pixels.

  • Categories    

    An estimate of persistent green cover per season. This is intended to estimate the portion of vegetation that does not completely senesce within a year, which primarily consists of woody vegetation (trees and shrubs), although there are exceptions where non-woody cover remains green all year round. It is derived by fitting a multi-iteration minimum weighted smoothing spline through the green fraction of the seasonal fractional cover (dp1) time series. A single band image is produced: persistent green vegetation cover (in percent). The no data value is 255.

  • Categories    

    This dataset list landform characteristics (i.e. visible features of a land area) observed in Rangeland sites across Australia by the TERN Surveillance Monitoring team, using standardised AusPlots methodologies. <br /> Landform observations are recorded at each site as part of the AusPlots Plots and Physical Descriptions method. Observations on the landform elements and their patterns are recorded as part of this protocol.<br />

  • Categories    

    This data set contains information on Electrical Conductivity and pH from bore water from two plots, Blackbutt and Salmongum the Great Western Woodland Site.

  • Categories    

    The climate adjusted linear seasonal persistent green trend is derived from analysis of the linear seasonal persistent green trend, adjusted for rainfall. The current version is based on the 1987-2014 period. <br> Seasonal persistent green cover is derived from seasonal cover using a weighted smooth spline fitting routine. This weights a smooth line to the minimum values of the seasonal green cover. This smooth minimum is designed to represent the slower changing green component, ideally consisting of perennial vegetation including over-storey, mid-storey and persistent ground cover. The seasonal persistent green is then summarised using simple linear regression, and the slope of the fitted line is captured in the linear seasonal persistent green product. This product is further processed to produce a climate-adjusted version.

  • Categories    

    The physical drivers of ecosystem formation – macroclimate, lithology and landform – along with vegetation structural formations are key determinants of current ecosystem type. Each combination of these ecosystem drivers – each ‘ecological facet’ – provides a unique set of opportunities and challenges for life. <br> Management and conservation should seek to understand and take in to account these drivers of ecosystem formation. By understanding the unique combinations of these drivers management strategies can plan for their full range of variation, and conservation efforts can ensure that unique ecosystems are not lost. Unfortunately, there is currently no Australia-wide standardized map of ecological facets at management-appropriate scales. <br> By understanding the magnitude and distribution of unique combinations of these drivers, management strategies can plan for their full range of variation, and conservation efforts can ensure that unique ecosystems are not lost. Additionally, by improving our understanding of the past and present conditions that have given rise to current ecological facets this dataset could facilitate future predictive environmental modelling. Finally, this data could assisting biodiversity conservation, climate change impact studies and mitigation, ecosystem services assessment, and development planning <br> Further information about the dataset can be found at <a href="https://ternaus.atlassian.net/wiki/spaces/TERNSup/pages/2276130817/GEOSS+Ecosystem+Map">GEOSS Ecosystem Map,TERN Knowledge Base </a> .