1 meter - < 30 meters
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
-
<p>This data set consists of a shapefile/kml of mangrove extent and dominant species for Kakadu National Park mangroves generated from true colour aerial photographs acquired in 1991.</p> <p>From true color 1991 orthomosaics of Field Island and the Wildman, West, and South Alligator Rivers, mangroves were mapped by first applying a fine scale spectral difference segmentation within eCognition to all three visible bands (blue, green, and red). A maximum likelihood (ML) algorithm within the environment for visualizing images (ENVI) software was then used to classify all segments using training areas associated with mangroves, but also water, mudflats, sandflats, and coastal woodlands. These were identified through visual interpretation of the imagery. Segmentation was necessary as 1) the diversity of structures and shadows within and between tree crowns limited the application of pixel-based classification procedures and 2) the color balance between the different photographs comprising the orthomosaics varied. All segments were examined individually and methodically to determine whether they should be reallocated to a non-mangrove class (e.g., mudflats) or confirmed as mangroves. Open woodlands dominated by Eucalyptus species could also be visually identified within the aerial photography (AP) orthoimages, although their discrimination was assisted by only considering areas where the underlying LiDAR DTM (Digital Terrain Model) exceeded 10 m, assuming this excludes tidally inundated sections.</p>
-
<p>This data set consists of .tif files of true colour orthomosaics for expansive areas of mangroves in Kakadu National Park in Australia's Northern Territory.</p> <p>The orthomosaics were generated from 68 stereo pairs of true colour aerial photographs acquired in 1991 in the lower reaches of the East Alligator, West Alligator, South Alligator and Wildman Rivers and Field Island, Kakadu National Park, Northern Australia (Mitchell et al., 2007). The photographs were taken at a flying height of 13,000 ft (3,960 m) using a Wild CR10, a standard photogrammetric camera with a frame size of 230 x 230 mm. The focal length was 152 mm. The photographs were scanned by Airesearch (Darwin) with a photogrammetric scanner to generate digital images with a pixel resolution between 12 and 15 mm. The orthomosaics have a spatial resolution of 1 m, cover an area of approximately 742 km<sup>2</sup> and a coastal distance of 86 km. </p> <p>These orthomosaics were co-registered using ground control points identified from 1:100,000 digital topographic maps with a Universal Transverse Mercator (UTM), and subsequently co-registered to LiDAR data acquired over the same region in 2011.</p>
-
This dataset indicates the presence and persistence of water across Queensland between 1988 and 2022. Water is one of the world’s most important resources as it’s critical for human consumption, agriculture, the persistence of flora and fauna species and other ecosystem services. Information about the spatial distribution and prevalence of water is necessary for a range of business, modelling, monitoring, risk assessment, and conservation activities. The water count product is based on water index and water masks for Queensland (Danaher & Collett 2006) and represents the proportion of observations with water present across the Landsat time series as a fraction of total number of possible observations for the period 1 Jan 1988 to 31 Dec 2022. The product has two bands where band 1 is the number of times water was present across the time series, and band 2 is the count of unobscured (i.e. non-null) input pixels, or number of total observations for that pixel. Cloud, cloud-shadow, steep slopes and topographic shadow can obscure the ability to count water presence.
-
The datasets in this series comprise predictions of biocondition for Queensland's Bioregions. The datasets are created using a gradient boosting decision tree (GBDT) model based on eight vegetation specific remote sensing (RS) datasets and 17,000 training sites of known vegetation community and condition state. Condition score was modelled as of the difference in the RS space within homogeneous vegetation communities. The product is intended to represent predicted BioCondition for year 2019 rather than any single date.
-
This dataset contains spatial layers describing Forest Connectivity from 1995-2019, in NSW Regional Forest Agreements (RFA) Areas along the eastern coast. Forest Connectivity accounts for the general quality of terrestrial habitats supporting biodiversity at each location, the fragmentation of habitat within its neighbourhood and how its position in the landscape contributes to connectivity among the habitats across a region. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2020). These base grids are Landsat in origin and have a resolution of 25m. <br> Forest Connectivity, including canopy cover connectivity and fragmentation is concerned and linked to forest condition. Concepts applied are to be aligned with definitions as found in the NSW Biodiversity Indicator Program (BIP) and the Spatial Links methodology for calculating connectivity.<br> Base cover extent grids used are from the NSW RFA Historic Forest Canopy Cover Extent – 1995 to 2019 product. <br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/fmip-baselines-ecosystem-health-projectfe1<br> This dataset is superseded by 'NSW Forest Monitoring and Improvement Program State-Wide Historic Forest Connectivity - 1995 to 2020'
-
NSW Forest Monitoring and Improvement Program RFA Historic Forest Canopy Cover Extent - 1995 to 2019
This dataset contains spatial layers describing Forest Canopy Extent from 1995-2019 in NSW Regional Forest Agreements (RFA) Areas along the eastern coast. Forest Canopy Extent is the likelihood that a certain area has forest at any given time. Forest Canopy is defined in accordance with the National State of the Forests Report which defines forests as containing as a minimum, a mature or potentially mature stand height exceeding 2 metres, stands dominated by trees usually having a single stem, where the mature or potentially mature stand component comprises 20% canopy coverage using a Crown Projective Cover (CPC) measure. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2020). These base grids are Landsat in origin and have a resolution of 25m. <br> To calculate forest canopy extent, these base grids have been processed through a series of land use and vegetation type exclusion masking and a through a fuzzy-logic based certainty analysis to reflect a forest cover extent coverage for NSW that is reflective of past and current coverage.<br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/fmip-baselines-ecosystem-health-projectfe1<br> This dataset is superseded by 'NSW Forest Monitoring and Improvement Program State-Wide Historic Forest Canopy Cover Extent - 1995 to 2020'
-
The Sentinel-2 seasonal fractional ground cover product shows the proportion of bare ground, green and non-green ground cover and is derived directly from the Sentinel-2 seasonal fractional cover product, also produced by Queensland's Remote Sensing Centre. The seasonal fractional cover product is a spatially explicit raster product, which predicts vegetation cover at medium resolution (10 m per-pixel) for each 3-month calendar season. However, the seasonal fractional cover product does not distinguish tree and mid-level woody foliage and branch cover from green and dry ground cover. As a result, in areas with even minimal tree cover (>15%), estimates of ground cover become uncertain. With the development of the fractional cover time-series, it has become possible to derive an estimate of ‘persistent green’ based on time-series analysis. The persistent green vegetation product provides an estimate of the vertically-projected green-vegetation fraction where vegetation is deemed to persist over time. These areas are nominally woody vegetation. This separation of the 'persistent green' from the fractional cover product, allows for the adjustment of the underlying spectral signature of the fractional cover image and the creation of a resulting 'true' ground cover estimate for each season. The estimates of cover are restricted to areas of <60% woody vegetation. Currently, the persistent green product has only been produced at 30 m pixel resolution based on Landsat imagery, resulting in this Sentinel-2 seasonal ground cover product having a medium 30 m pixel resolution also. This is an experimental product which has not been fully validated. This product is similar to the <a href="https://portal.tern.org.au/metadata/23884 ">Seasonal ground cover - Landsat, JRSRP algorithm Version 3.0, Australia Coverage</a> which is based on a different satellite sensor.
-
This is a spatial dataset comprising predictions of vegetation condition for biodiversity for the brigalow belt bioregion. The dataset was created using a gradient boosting decision tree (GBDT) model based on eight vegetation specific remote sensing (RS) datasets and 17,000 training sites of known vegetation community and condition state. Condition score was modelled as a function of the difference in the RS space within homogeneous vegetation communities. The product is intended to represent predicted BioCondition for year 2019 rather than any single date.
-
The spatial layers in this dataset detail forest cover extent over NSW. They have been created for the NSW Natural Resources Commission to detail historic baseline and trends of forest cover extent coverage for NSW for all land tenures, including all RFAs and IFOAs. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2021). These base grids are Landsat in origin and have a resolution of 25m. <br> These base grids have been processed through a series of land use and vegetation type exclusion masking and a through a fuzzy-logic based certainty analysis to reflect a forest cover extent coverage for NSW that is reflective of past and current coverage. <br> These grids cover the years from 1995 to 2020. The year gaps are triennial or biennial data layers from 1995 to 2004. 1996,1997,1999,2001,2003 years missing as these were not assessed in original applied database. From 2004 to 2020 data layers become annualised.<br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/fmip-baselines-ecosystem-health-projectfe1<br> This dataset supersedes "NSW Forest Monitoring and Improvement Program RFA Historic Forest Cover Extent – 1995 to 2019". https://portal.tern.org.au/metadata/23696.
-
This dataset contains spatial layers describing Forest Loss and Recovery from 1998-2020 in NSW. For this dataset product and the processing of metrics, aspects of canopy loss and disturbances in the forest estate were investigated. Measures of canopy loss and recovery are seen as one of the multiple indicators of forest health. This is related to agents or pressures that affect the capacity of native forests and commercial operations to maintain normal ecosystem functions and sustainably provide productive capacity. <br> To attribute disturbances, as a driver of change, a Multiple Lines of Evidence (MLE) approach was used that leveraged available spatial datasets. This allowed for a project-wide disturbance and disturbance context layer to be generated. This information can be interpreted back against forest cover extent change outputs, in particular the differences between individual years, to identify the areas of change and the likely reasons why. Therefore, landscape trends in forest loss can be potentially assigned or at the very least investigated. <br> The time taken, in terms of years, for areas to recover from losses in forest cover extent can has also been determined. This process identifies the time taken for a patch of forest to return to a 20% canopy cover threshold, and other characteristics such as the forest type and likely disturbance or loss event.<br> Base cover extent grids used are from the NSW State-wide Historic Forest Cover Extent – 1995 to 2020 product. These have been processed through a series of land use and vegetation type exclusion masking and a through a fuzzy-logic based certainty analysis to reflect a forest cover extent coverage for NSW that is reflective of past and current coverage. <br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/fmip-baselines-ecosystem-health-projectfe1<br> This dataset supersedes "NSW Forest Monitoring and Improvement Program RFA Historic Forest Loss and Recovery – 1998 to 2019".