From 1 - 10 / 41
  • Categories    

    This dataset lists land surface substrate characteristics observed in Rangeland sites across Australia by the TERN Surveillance Monitoring team, using standardised AusPlots methodologies. <br /> Land surface substrate observations are collected at each site as part of the AusPlots <a href="http://linked.data.gov.au/def/ausplots-cv/c5a32483-bf2f-421d-b03d-6d81e1195de2">Point intercept</a> method. At each site, observations on the substrate type (e.g. rock, coarse woody debris, litter) are recorded on transect laid out on the plots see AusPlots <a href="http://linked.data.gov.au/def/ausplots-cv/c5a32483-bf2f-421d-b03d-6d81e1195de2">Point intercept</a> method. These records form the basis for ground cover derivation, see the Ausplots <a href="http://linked.data.gov.au/def/tern-cv/1ae719f6-93f2-494c-822d-2631b1d3e6c3">Ground cover</a> and <a href="http://linked.data.gov.au/def/ausplots-cv/c5a32483-bf2f-421d-b03d-6d81e1195de2">Point intercept</a> methods.<br />

  • Categories    

    <p>This data set consists of .tif files of true colour orthomosaics for expansive areas of mangroves in Kakadu National Park in Australia's Northern Territory.</p> <p>The orthomosaics were generated from 68 stereo pairs of true colour aerial photographs acquired in 1991 in the lower reaches of the East Alligator, West Alligator, South Alligator and Wildman Rivers and Field Island, Kakadu National Park, Northern Australia (Mitchell et al., 2007). The photographs were taken at a flying height of 13,000 ft (3,960 m) using a Wild CR10, a standard photogrammetric camera with a frame size of 230 x 230 mm. The focal length was 152 mm. The photographs were scanned by Airesearch (Darwin) with a photogrammetric scanner to generate digital images with a pixel resolution between 12 and 15 mm. The orthomosaics have a spatial resolution of 1 m, cover an area of approximately 742 km<sup>2</sup> and a coastal distance of 86 km. </p> <p>These orthomosaics were co-registered using ground control points identified from 1:100,000 digital topographic maps with a Universal Transverse Mercator (UTM), and subsequently co-registered to LiDAR data acquired over the same region in 2011.</p>

  • Categories    

    <p>This data set consists of a shapefile/kml of mangrove extent and dominant species for Kakadu National Park mangroves generated from true colour aerial photographs acquired in 1991.</p> <p>From true color 1991 orthomosaics of Field Island and the Wildman, West, and South Alligator Rivers, mangroves were mapped by first applying a fine scale spectral difference segmentation within eCognition to all three visible bands (blue, green, and red). A maximum likelihood (ML) algorithm within the environment for visualizing images (ENVI) software was then used to classify all segments using training areas associated with mangroves, but also water, mudflats, sandflats, and coastal woodlands. These were identified through visual interpretation of the imagery. Segmentation was necessary as 1) the diversity of structures and shadows within and between tree crowns limited the application of pixel-based classification procedures and 2) the color balance between the different photographs comprising the orthomosaics varied. All segments were examined individually and methodically to determine whether they should be reallocated to a non-mangrove class (e.g., mudflats) or confirmed as mangroves. Open woodlands dominated by Eucalyptus species could also be visually identified within the aerial photography (AP) orthoimages, although their discrimination was assisted by only considering areas where the underlying LiDAR DTM (Digital Terrain Model) exceeded 10 m, assuming this excludes tidally inundated sections.</p>

  • Categories    

    This dataset list landform characteristics (i.e. visible features of a land area) observed in Rangeland sites across Australia by the TERN Surveillance Monitoring team, using standardised AusPlots methodologies. <br /> Landform observations are recorded at each site as part of the AusPlots <a href="http://linked.data.gov.au/def/ausplots-cv/4c0dabaf-1771-465f-890f-be23337c530e">Plots and Physical Descriptions</a> method. Observations on the landform elements and their patterns are recorded as part of this protocol.<br />

  • Categories    

    This dataset list soil characteristics observed in Rangeland sites across Australia by the TERN Surveillance Monitoring team, using standardised AusPlots methodologies. <br /> Soil observations are recorded at each site as part of the AusPlots <a href="http://linked.data.gov.au/def/ausplots-cv/dbd0b3ef-c9e6-42d9-9e40-53ff4733fe64">Soil and Landscapes</a> method. Observations on the soil surface conditions are recorded as part of the Ausplots <a href="http://linked.data.gov.au/def/ausplots-cv/74615bb8-9cc5-4a63-868b-3258108ffcb4">Plot description</a> method.<br />

  • Categories    

    This dataset indicates the presence and persistence of water across Queensland between 1988 and 2022. Water is one of the world’s most important resources as it’s critical for human consumption, agriculture, the persistence of flora and fauna species and other ecosystem services. Information about the spatial distribution and prevalence of water is necessary for a range of business, modelling, monitoring, risk assessment, and conservation activities. The water count product is based on water index and water masks for Queensland (Danaher & Collett 2006) and represents the proportion of observations with water present across the Landsat time series as a fraction of total number of possible observations for the period 1 Jan 1988 to 31 Dec 2022. The product has two bands where band 1 is the number of times water was present across the time series, and band 2 is the count of unobscured (i.e. non-null) input pixels, or number of total observations for that pixel. Cloud, cloud-shadow, steep slopes and topographic shadow can obscure the ability to count water presence.

  • Categories    

    This dataset contains spatial layers describing Forest Canopy Extent from 1995-2019 in NSW Regional Forest Agreements (RFA) Areas along the eastern coast. Forest Canopy Extent is the likelihood that a certain area has forest at any given time. Forest Canopy is defined in accordance with the National State of the Forests Report which defines forests as containing as a minimum, a mature or potentially mature stand height exceeding 2 metres, stands dominated by trees usually having a single stem, where the mature or potentially mature stand component comprises 20% canopy coverage using a Crown Projective Cover (CPC) measure. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2020). These base grids are Landsat in origin and have a resolution of 25m. <br> To calculate forest canopy extent, these base grids have been processed through a series of land use and vegetation type exclusion masking and a through a fuzzy-logic based certainty analysis to reflect a forest cover extent coverage for NSW that is reflective of past and current coverage.<br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/fmip-baselines-ecosystem-health-projectfe1<br> This dataset is superseded by 'NSW Forest Monitoring and Improvement Program State-Wide Historic Forest Canopy Cover Extent - 1995 to 2020'

  • Categories    

    This dataset contains spatial layers describing Forest Connectivity from 1995-2019, in NSW Regional Forest Agreements (RFA) Areas along the eastern coast. Forest Connectivity accounts for the general quality of terrestrial habitats supporting biodiversity at each location, the fragmentation of habitat within its neighbourhood and how its position in the landscape contributes to connectivity among the habitats across a region. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2020). These base grids are Landsat in origin and have a resolution of 25m. <br> Forest Connectivity, including canopy cover connectivity and fragmentation is concerned and linked to forest condition. Concepts applied are to be aligned with definitions as found in the NSW Biodiversity Indicator Program (BIP) and the Spatial Links methodology for calculating connectivity.<br> Base cover extent grids used are from the NSW RFA Historic Forest Canopy Cover Extent – 1995 to 2019 product. <br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/fmip-baselines-ecosystem-health-projectfe1<br> This dataset is superseded by 'NSW Forest Monitoring and Improvement Program State-Wide Historic Forest Connectivity - 1995 to 2020'

  • Categories    

    The Landsat-derived fractional cover layer gives the amount of bare ground, green vegetation, and dead vegetation for each pixel on a specific date. The landscape of NSW undergoes a large variation in greenness throughout the seasonal and drought cycles. Information about the variation in greenness can be useful for a variety of mapping and planning tasks. Areas of green vegetation are important for native species habitat and human recreation activities. Green areas in the landscape are often related to the availability of near surface water or recent inundation, such as bogs, swamps and mires. These green areas are important for native plants and animals as locations of food and water in dry times. The green fraction has been analysed for a sequence of images to show how long an area stays green following a greening event, such as grass growth in response to rainfall. The map of green accumulation for NSW was created from Landsat images from 1988 to 2012. Areas exhibiting the highest values are the areas of NSW that respond with high green cover for a long period after a greening event.

  • Categories    

    Field spectroradiometer measurements have been collected at several locations across Australia (formally known as the AusCover Supersites) to relate field based measurements to satellite data products, such as Landsat and MODIS NBAR products. The Hyperspectral ground-based data is used for calibration and validation of at-surface reflectance of airborne hyper-spectral image data. Once the at-surface reflectance values of the hyper-spectral image data have been validated, the data can be used for up-scaling to medium spatial resolution Landsat and MODIS data for cal/val of NBAR products.