From 1 - 10 / 40
  • Categories    

    This dataset contains UAV multispectral imagery collected as part of a field trial to test the Unmanned Aerial System to be used for the TERN Drone project. The UAS platform is DJI Matrice 300 RTK with 2 sensors: Zenmuse P1 (35 mm) RGB mapping camera and Micasense RedEdge-MX (5-band multispectral sensor). P1 imagery were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 Mobile Station. P1 Camera positions were post-processed using <a href="https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos">AUSPOS</a>. The flights took place between 14:58 and 03:08 at a height of 80m with a flying speed set to 5 m/s. Forward and side overlaps of photographs were set to 80%. <br><br> Micasense multispectral sensor positions were interpolated using P1, following which a standard workflow was followed in Agisoft Metashape to generate this orthomosaic (resolution 5 cm). Reflectance calibration was performed using captures of the MicaSense Calibration Panel taken before the flight. The orthomosaic raster has the relative reflectance (no unit) for the 5 bands (B, G, R, RedEdge, NIR). This cloud optimised (COG) GeoTIFF was created using rio command line interface. The coordinate reference system of the COG is EPSG 7855 - GDA2020 MGA Zone 55. <br><br> In the raw data RedEdge-MX image file suffixes correspond to bands like so - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge. However, in the processed Orthomoasic GeoTIFF, the bands are ordered in the wavelength order (Blue, Green, Red, Red Edge, NIR).

  • Categories    

    This dataset contains UAV multispectral imagery collected as part of a field trial to test the Uncrewed Aerial System to be used for the TERN Drone project. The UAS platform is DJI Matrice 300 RTK with 2 sensors: Zenmuse P1 (35 mm) RGB mapping camera and Micasense RedEdge-MX Dual (10-band multispectral sensor). P1 imagery were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 Mobile Station. P1 Camera positions were post-processed using <a href="https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos">AUSPOS</a>. Flight conducted between 10:26 am and 10:47 am AEDT at flying height 80 m, forward and side overlaps for Zenmuse P1 set to 80%. MicaSense RedEdge-MX Dual triggered using timer mode (every second). <br><br> Micasense multispectral sensor positions were interpolated using P1, following which a standard workflow was followed in Agisoft Metashape to generate this orthomosaic (resolution 5 cm). Reflectance calibration was performed using captures of the MicaSense Calibration Panel taken before the flight. The orthomosaic raster has the relative reflectance (no unit) for the 10 bands (Coastal Blue, Blue, Green 531, Green, Red 650, Red, RedEdge 705, RedEdge, RedEdge 740, NIR). The cloud optimised (COG) GeoTIFF was created using rio command line interface. The coordinate reference system of the COG is EPSG 7855 - GDA2020 MGA Zone 55. <br><br> In the raw data RedEdge-MX image file suffixes correspond to bands like so - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge, 6: Coastal Blue, 7: Green 531, 8: Red 650, 9: RedEdge 705, 10: RedEdge 740. However, in the processed Orthomoasic GeoTIFF, the bands 1-10 are ordered as per the Central Wavelength (Coastal Blue, Blue, Green 531, Green, Red 650, Red, RedEdge 705, RedEdge, RedEdge 740, NIR).

  • Categories    

    This dataset contains UAV RGB imagery collected as part of a field trial to test the Uncrewed Aerial System to be used for the TERN Drone project. The UAS platform is DJI Matrice 300 RTK with 2 sensors: Zenmuse P1 (35 mm) RGB mapping camera and Micasense RedEdge-MX Dual (10-band multispectral sensor). P1 imagery were georeferenced using the onboard GNSS in M300 and the D-RTK 2 Mobile Station. Camera positions were post-processed using <a href="https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos">AUSPOS</a>. Flight conducted between 10:26 am and 10:47 am AEDT at flying height 80 m, forward and side overlap set to 80%. <br><br> RGB orthomosaic (resolution: 1 cm. CRS: EPSG 7855 - GDA2020 MGA Zone 55) generated using Agisoft Metashape Professional, and a cloud optimised GeoTIFF was created using rio command line interface.

  • Categories    

    This dataset contains UAV RGB imagery collected as part of a field trial to test the Uncrewed Aerial System to be used for the TERN Drone project. The UAS platform is DJI Matrice 300 RTK with 2 sensors: Zenmuse P1 (35 mm) RGB mapping camera and Micasense RedEdge-MX (5-band multispectral sensor). P1 imagery were georeferenced using the onboard GNSS in M300 and the D-RTK 2 Mobile Station. Camera positions were post-processed using <a href="https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos">AUSPOS</a>. The flight took place between 14:00 and 14:08 at a height of 80m with a flying speed set to 5 m/s. Forward and side overlaps of photographs were set to 80%. <br><br> Agisoft Metashape was used to generate this RGB orthomosaic (resolution 1 cm). This cloud optimised GeoTIFF was created using rio command line interface. The coordinate reference system of the orthomosaic is EPSG 7855 - GDA2020 MGA Zone 55.

  • Categories    

    This data contains relative species cover of vascular plants in plots of either mature tall, wet eucalypt forest or of 25-50 year-old silvicultural regeneration following clearfell harvesting in the Warra Tall Eucalypt site between 2010 - 2011

  • Categories    

    Data on weather conditions at the Warra Tall Eucalypt site collected between 2004 - 2012. Data includes daily maximum and minimum temperatures, wind speed, wind direction, rainfall and humidity.

  • Categories    

    Gentry transects were established to monitor the vegetation abundance, cover and structure of the mid-stratum and subordinate stratum of the core 1 ha plot in the Warra Tall Eucalypt site in 2014.

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Silver Plains Flux Station was established in 2019 in Interlaken, on the Tasmanian Central Plateau, on land owned and managed by the Tasmanian Land Conservancy.</br>

  • Categories    

    This data set contains information on hydrology of small catchments at Warra Long-Term Ecological Research (LTER) Site also referred to as the Warra Tall Eucalypt site, Tasmania. Data on stream flow daily amounts and averages from three sites, Warra, Swanson and King Creek.

  • Categories    

    <br>This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in high-altitude grassy peatland ecosystem using eddy covariance techniques. It been processed using PyFluxPro (v3.4.4) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. </br> <br>Silver Plains Flux Station was established in 2019 in Interlaken, on the Tasmanian Central Plateau, on land owned and managed by the Tasmanian Land Conservancy. </br><br>This data is also available at http://data.ozflux.org.au</br>