Keyword

relative humidity

142 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
From 1 - 10 / 142
  • Categories    

    The project is focused on the topic, 'enhanced heat tolerance of virus-infected aphids lead to niche expansion and reduced interspecific competition. The two aphid species studied are <i>Rhopalosiphum padi</i> and <i>Rhopalosiphum maidis</i>. The project had some of the following objectives: [1] Spatial distribution of two aphid species on the host plants [2] Upper thermal limits of two aphid species. [3] Effects of the viral infection on the host plant thermal profile. [4] Levels of expression of heat shock protein genes of virus-free and viruliferous aphids. [5] Locomotor capacity of aphids, effects of viruses on the locomotor capacity. [6] Effects of viral infection, temperature, and competition on the lifespan and fecundity of <i>R. padi</i> [7] Effects of viral infection, temperature, and competition on the lifespan and fecundity of <i>R. maidis</i> [8] Temperature of acrylic tubes used on aphid experiments. [9] Thermal lethal dose 50 of virus-free and viruliferous aphids [10] Thermal preference of virus-free and viruliferous aphids. This information can be very useful for ecologist working on insect population dynamics as well as physiologist and eco-physiologists doing meta-analyses of expression of heat shock protein genes induced by symbionts.

  • Categories    

    The Australian cosmic-ray soil moisture monitoring network was first established in 2010 to provide Australian and global researchers with spatially distributed intermediate scale soil moisture observations. A cosmic-ray sensor (CRS) provides continuous estimates of soil moisture over an area of approximately 30 hectares by measuring naturally generated fast neutrons (energy 10–1000 eV) that are produced by cosmic rays passing through the Earth’s atmosphere. The neutron intensity above the land surface is inversely correlated with soil moisture as it responds to the hydrogen contained in the soil and to a lesser degree to plant and soil carbon compounds. The cosmic-ray technique is also passive, non-contact, and is largely insensitive to bulk density, surface roughness, the physical state of water, and soil texture. The scale of CRS measurements fills the void between point scale sensor measurements and large scale satellite observations. The depth of measurements varies with the moisture content of the soil but is typically between 10-30 cm. The depth of observations is reported as ‘effective depth’. <br> The CosmOz network is expanding as new sensors are added over time. The initial network was funded by CSIRO Land and Water but more recently TERN has funded work to maintain the network add new sensors and deliver data more efficiently. The standard CRS installation includes; a cosmic-ray neutron tube, a rain gauge (2m high), temperature and humidity sensors, and an atmospheric pressure sensor. Measures of all parameters are reported at an hourly interval. Each CRS requires an in-field calibration across the footprint of measurements to convert neutron counts to soil moisture content. The calibration includes collection of soil samples for bulk density, lattice water content and soil organic carbon.<br> The Australia CosmOz network consists of <a href="https://cosmoz.csiro.au/sites">19 stations</a>. The extent of the network and available data can be seen at the CosmOz network web page: <a href="https://cosmoz.csiro.au/">https://cosmoz.csiro.au</a>. The data is also accessible from the <a href="https://landscapes-cosmoz-api.tern.org.au/rest/doc">TERN Cosmoz REST API</a>.<br> The calibration and correction procedures used by the network are described by <a href="https://doi.org/10.1002/2013WR015138">Hawdon et al. 2014 </a>.

  • Categories    

    Schools Weather and Air Quality (SWAQ) is a citizen science project funded by the Department of Industry, Innovation and Science as part of its Inspiring Australia - Citizen Engagement Program. SWAQ is equipping public schools across Sydney with research-grade meteorology and air quality sensors, enabling students to collect and analyse research quality data through curriculum-aligned classroom activities. The network includes twelve automatic weather stations and seven automatic air quality stations, stretched from -33.5995° to -34.0421° latitude and from 150.6913° to 151.2708° longitude. The average spacing is 10.2 km and the average installation height is 2.5 m above ground level. Optimum site allocation was determined by undertaking a multi-criteria weighted overlay analysis to ensure data representativeness and quality. Six meteorological parameters (dry-bulb temperature, relative humidity, barometric pressure, rain, wind speed, and wind direction) and six air pollutants (SO2, NO2, CO, O3, PM2.5, and PM10) are recorded. Observations and metadata are available from September 2019 for WXT536 + AQT420 stations and from October 2019 for WXT536 stations (refer to Table 1 of the Dataset Guide), thus encompassing the Black Summer bushfire and the COVID-19 lockdown period. Data routinely undergo quality control, quality assurance and publication.

  • Categories  

    <p>The dataset comprises well-designed survey data from the first fuel load survey across 192 transects within the 48 AusPlots Forests, 1-ha monitoring plots across Australia. Data includes: [1] Site identifiers (ID and Site Name) and site- or transect- specific notes from the fuel survey campaign; [2] Transect survey dates; [3] Transect photograph numbers and attributes (Bearing, Slope and Aspect); [4] Fuel measurements (Grass and Litter height; Duff depth; Fine Woody fuel counts and Coarse Woody fuel counts and diameter; Projective cover for biomass components (Grass, Litter, Herbs, Vines and Shrubs), and Mass of biomass components (Grass, Litter, Herbs and Vines)); [5] Moisture content for biomass components (Grass, Litter, Herbs and Vines).</p> Descriptions of the data and coding protocols used in the database are explained in (a) the database itself; (b) the explanatory file attached to this dataset and (c) the Ausplots Forest Monitoring Network Manual. The protocols and coding used in this module are drawn directly from international forest fuel survey protocols and are consistent with other Australian forest fuel inventory methodologies.

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux</a>.<br /> <br />The Ti Tree East site was established in July 2012 and is managed by the University of Technology Sydney. Pine Hill Station is a functioning cattle station that has been in operation for longer than 50 years. However, the east side has not been stocked in over three years. The site is a mosaic of the primary semi-arid biomes of central Australia: grassy mulga woodland and Corymbia/Triodia savanna.The woodland is characterised by a mulga (Acacia aneura) canopy, which is 4.85 m tall on average. The soil is red sand overlying an 8 m deep water table. Elevation of the site is 553 m above sea level, and the terrain is flat. Mean annual precipitation at the nearby (30 km to the south) Bureau of Meteorology station is 305.9 mm but ranges between 100 mm in 2009 to 750 mm in 2010. Predominant wind directions are from the southeast and east. The instrument mast is 10 m tall. Fluxes of heat, water vapour and carbon are measured using the open-path eddy covariance technique at 9.81m. Supplementary measurements above the canopy include temperature and humidity (9.81 m), windspeed and wind direction (8.28 m), downwelling and upwelling shortwave and longwave radiation (9.9 m). Precipitation is monitored in the savanna (2.5m). Supplementary measurements within and below the canopy include barometric pressure (2 m). Below ground soil measurements are made beneath Triodia, mulga and grassy understorey and include ground heat flux (0.08 m), soil temperature (0.02 m – 0.06 m) and soil moisture (0 – 0.1m, 0.1 – 0.3m, 0.6 – 0.8m and 1.0 – 1.2m). <br />For additional site information, see http://ozflux.org.au/siteOfTheMonth/2020-09Alice-and-TiTree/2020-09Alice-and-TiTree.html . <br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The flux station was established in 2017 in Wandoo Woodland, which is surrounded by broadacre farming. About 80% of the overstorey cover is <em>Eucalyptus accedens</em> Climate information comes from the nearby Pingelly BoM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445 mm with highest rainfall in June and July of 81 mm each month. Maximumum and minuimum annual rainfall is 775 and 217 mm, respectively. Maximum temperatures range from 31.9°C (in Jan) to 15.4°C (in July), while minimum temperatures range from 5.5°C (in July) to 16.0 °C (in Feb). The Noongar people are the traditional owners at Boyagin. <br />For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/boyagin-wandoo-woodland-supersite/ . <br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The flux station is located within an area of dryland agriculture. The surrounding area is dominated by broadacre farming practices. The vegetation cover is predominantly pasture. Elevation of the site is close to 330 m. Climate information comes from the nearby Pingelly BoM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445 mm with highest rainfall in June and July of 81 mm each month. Maximumum and minuimum annual rainfall is 775 and 217 mm, respectively. Maximum temperatures range from 31.9°C (in Jan) to 15.4°C (in July), while minimum temperatures range from 5.5°C (in July) to 16.0 °C (in Feb).<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.4.7) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The ecosystem was dominated by <em>Eucalyptus tectifica</em> and <em>Planchonia careya </em>.<br /> <br /> Elevation of the site was close to 90m and mean annual precipitation at a nearby Bureau of Meteorology site was 1730mm. Maximum temperatures ranged from 31.4°C (in June) to 36.8°C (in October) while minimum temperatures range from 16.2°C (in July) to 25.1°C (in December). Maximum temperature varied seasonally by approximately 5.4°C and minimum temperatures varied by approximately 8.9°C.The instrument mast was 15 meters tall. Heat, water vapour and carbon dioxide measurements were taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation were measured above the canopy. Soil heat fluxes are measured and soil moisture content was gathered using time domain reflectometry. <br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The flux station was established in August 2011 while the site supported tropical savanna. The site was part of a deforestation experiment measuring greenhouse gas exchange during conversion of forest to farmland. The land was being cultivated for watermelon production from 2013.<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.4.7) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>.<br /> <br />The Alice Springs Mulga flux station is located on Pine Hill cattle station, near Alice Springs in the Northern Territory. The woodland is characterized by the Acacia aneura canopy, which is 6.5m tall on average. Elevation of the site is 606m above sea level, and the terrain is flat. Mean annual precipitation at the nearby (45km distant) Bureau of Meteorology station is 305.9mm but ranges between 100mm in 2009 to 750mm in 2010. Predominant wind directions are from the southeast and east.The extent of the woodland is 11km to the east of the flux station and 16km to the south. The soil is red sandy clay (50:50 sand:clay) overlying a 49m deep water table. Pine Hill Station is a functioning cattle station that has been in operation for longer than 50 years.The instrument mast is 13.7m tall. Fluxes of heat, water vapour and carbon are measured using the open-path eddy covariance technique at 11.6m. Supplementary measurements above the canopy include temperature and humidity (11.6m), windspeed and wind direction (9.25m), downwelling and upwelling shortwave and longwave radiation (12.2m). Precipitation is monitored in a canopy gap (2.5m). Supplementary measurements within and below the canopy include barometric pressure (1m), wind speed (2m, 4.25m and 6.5m), and temperature and humidity (2m, 4.25m and 6m). Below ground soil measurements are made in bare soil, mulga, and understory habitats and include ground heat flux (0.08m), soil temperature (0.02m – 0.06m) and soil moisture (0 – 0.1m, 0.1 – 0.3m, 0.6 – 0.8m and 1.0 – 1.2m). Ancillary measurements include soil water and carbon fluxes, leaf water potential, leaf gas exchange, stem basal area, stem growth, litter production, leaf area index, stem hydraulic conductance, and carbon and water stable isotope ratios. The site was established in September 2010 in conjunction with the Woodforde River NGCRT Superscience Site and is managed by the University of Technology Sydney.<br />For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/alice-mulga-supersite/ <br /><br />