From 1 - 10 / 10
  • Categories  

    These are the soil attribute products of the Tasmanian Soil Attribute Grids. There are 8 soil attribute products available from the TERN Soil Facility. Each soil attribute product is a collection of 6 depth slices. Each depth raster has an upper and lower uncertainty limit raster associated with it. The depths provided are 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm & 100-200cm, consistent with the Specifications of the GlobalSoilMap. Attributes: pH - Water (pHw); Electical Conductivity dS/m (ECD); Clay % (CLY); Sand % (SND); Silt % (SLT); Bulk Density - Whole Earth Mg/m3 (BDw); Organic Carbon % (SOC); Coarse Fragments >2mm (CFG). These products were developed using datasets held by the Tasmanian Department of Primary Industries Parks Water & Environment (DPIPWE) Soils Database. The mapping was made by using spatial modelling and digital soil mapping (DSM) techniques to produce a fine resolution 3 arc-second grid of soil attribute values and their uncertainties, across all of Tasmania. Note: Previous versions of this collection contained a Depth layer. This has been removed as the units do not comply with Global Soil Map specifications.

  • Categories    

    This is Version 2 of the Australian soil pH (CaCl<sub>2</sub>) product of the Soil and Landscape Grid of Australia.<br><br> It supersedes the Release 1 product that can be found at https://doi.org/10.4225/08/546F17EC6AB6E<br><br> The map gives a modelled estimate of the spatial distribution of the pH of soils across Australia.<br><br> The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5&nbsp;cm, 5-15&nbsp;cm, 15-30&nbsp;cm, 30-60&nbsp;cm, 60-100&nbsp;cm and 100-200&nbsp;cm. These depths are consistent with the specifications of the GlobalSoilMap.net project. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90&nbsp;m pixels). An additional measure of model reliability is through assessment of model extrapolation risk. This measure provides users a spatial depiction where model estimates are made within the domain of the observed data or not.<br><br> Detailed information about the Soil and Landscape Grid of Australia can be found at - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html">SLGA</a><br><br> - Total number of gridded maps for this attribute: 24.<br> - Number of pixels with coverage per layer: 2007M (49200 * 40800).

  • Categories    

    This is Version 1 of the Australian pH (Water) product of the Soil and Landscape Grid of Australia.<br><br> The map gives a modelled estimate of the spatial distribution of soil pH (1:5 soil water solution) in soils across Australia.<br><br> The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5&nbsp;cm, 5-15&nbsp;cm, 15-30&nbsp;cm, 30-60&nbsp;cm, 60-100&nbsp;cm and 100-200&nbsp;cm. These depths are consistent with the specifications of the <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf">GlobalSoilMap.net project</a>. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90&nbsp;m pixels).<br><br> Detailed information about the Soil and Landscape Grid of Australia can be found at - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html">SLGA</a>.<br><br> <ul style="list-style-type: disc;"> <li>Attribute Definition: pH of a 1:5 soil water solution;</li> <li>Units: None;</li> <li>Period (temporal coverage; approximately): 1950-2021;</li> <li>Spatial resolution: 3 arc seconds (approx 90&nbsp;m);</li> <li>Total number of gridded maps for this attribute: 18;</li> <li>Number of pixels with coverage per layer: 2007M (49200 * 40800);</li> <li>Data license : Creative Commons Attribution 4.0 (CC BY);</li> <li>Target data standard: GlobalSoilMap specifications;</li> <li>Format: Cloud Optimised GeoTIFF;</li></ul>

  • Categories    

    Water quality parameters of the surface water from the Robson Creek Rainforest site. The parameters include water temperature, conductivity, water pH, salinity and dissolved oxygen.

  • Categories  

    These products are derived from disaggregation of legacy soil mapping in the agricultural zone of South Australia using the DSMART tool (Odgers et al. 2014a); produced for the Soil and Landscape Grid of Australia Facility. There are 10 soil attribute products available from the Soil Facility: Available Water Capacity (AWC); Bulk Density - Whole Earth (BDw); Cation Exchange Capacity (CEC); Clay (CLY); Coarse Fragments (CFG); Electrical Conductivity (ECD); Organic Carbon (SOC); pH - CaCl2( pHc); Sand (SND); Silt (SLT). Each soil attribute product is a collection of 6 depth slices (except for effective depth and total depth). Each depth raster has an upper and lower uncertainty limit raster associated with it. The depths provided are 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm & 100-200cm, consistent with the specifications of the GlobalSoilMap. The DSMART tool was used in a downscaling process to translate legacy soil landscape mapping to 3” resolution (approx. 100m cell size) raster predictions of soil classes and corresponding soil properties. Legacy mapping was performed at 1:50,000 and 1:100,000 scales to delineate associated soils within polygons however individual soils were not explicitly spatially defined. These new disaggregated map products aim to incorporate expert soil surveyor knowledge embodied in legacy polygon soil maps, while providing re-interpreted soil spatial information at a scale that is more suited to on-ground decision making. Note: The DSMART-derived dissagregated legacy soil mapping products provide different spatial predictions of soil properties to the national TERN Soil Grid products derived by Cubist (data mining) kriging based on site data by Viscarra Rossel et al. (2014). Where they overlap, the national prediction layers and DSMART products can be considered complementary predictions. They will offer varying spatial reliability (/ uncertainty) depending on the availability of representative site data (for national predictions) and the scale and expertise of legacy mapping. The national predictions and DSMART disaggregated layers have also been merged as a means to present the best available (lowest statistical uncertainty) data from both products (Clifford et al. 2014). Previous versions of this collection contained Depths layers. These have been removed as the units do not comply with Global Soil Map specifications.

  • Categories    

    These datasets consist of soil maps generated to assess baselines, drivers and trends for soil health and stability within the NSW Regional Forest Agreement (RFA) regions. <br> The maps are organised into empirical soil maps, digital soil maps, and data cube maps. <br> Empirical soil maps consists of four products. Maps include topsoil pH, carbon, Emerson Aggregate Stability and Soil Profile Quality Confidence. Each map consists of 2,162 units. Maps were generated using the most representative soil profile for each unit available within the Soil and Land Information System (SALIS). The 2008 woody vegetation coverage was used as baseline. Maps reflect values when the sampling occurred with temporal changes not being accounted for. Locations with missing or of poor quality data are identified, providing a confidence rating map as part of the evaluation process.<br> Digital soil maps include map products of key soil condition indicators covering the Regional Forest Agreement regions of eastern NSW. Raster maps of key soil indicators, such as soil carbon, pH, bulk density, hillslope erosion and others, were created at 100 m resolution. For each key soil indicator, maps include baseline (approximately 2008) levels as well as trends of change resulting from different human and natural disturbances such as forest harvesting, uncontrolled stock grazing, climate change and bush fire. <br> Data cube maps include time series of soil organic carbon (SOC) between January 1990 and December 2020 for the Regional Forest Agreement regions of eastern NSW. Products provide estimates of SOC concentrations and associated trends through time. Modelling was carried out using a data cube platform incorporating machine learning space-time framework and geospatial technologies. Important covariates required to drive this spatio-temporal modelling were identified using the Recursive Feature Elimination algorithm (RFE). <br> A web mapping application on the NSW Spatial Collaboration Portal depicts these datasets. Access the webapp through the link below:<br> https://portal.spatial.nsw.gov.au/portal/home/item.html?id=af9c71935f024f4a8f64cb39f5eba007

  • Categories    

    Water quality parameters of the surface water from two permanent sampling sites on the Samford Creek, southeast Queensland, Australia, are determined. The parameters include water temperature, flow velocity, turbidity, major cations and anions, plus total inorganic and organic nitrogen and phosphorus.

  • Categories  

    These are products of the Soil and Landscape Grid of Australia Facility generated through disaggregation of the Western Australian soil mapping. There are 9 soil attribute products available from the Soil Facility: Available Water Holding Capacity - Volumetric (AWC); Bulk Density - Whole Earth (BDw); Bulk Density - Fine Earth (BDf); Clay (CLY); Course Fragments (CFG); Electrical Conductivity (ECD); pH Water (pHw); Sand (SND); Silt (SLT). Each soil attribute product is a collection of 6 depth slices. Each depth raster has an upper and lower uncertainty limit raster associated with it. The depths provided are 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm & 100-200cm, consistent with the Specifications of the GlobalSoilMap. The DSMART tool (Odgers et al. 2014) tool was used in a downscaling process to translate legacy soil landscape mapping to 3” resolution (approx. 100m cell size) raster predictions of soil classes (Holmes et al. Submitted). The soil class maps were then used to produce corresponding soil property surfaces using the PROPR tool (Odgers et al. 2015; Odgers et al. Submitted). Legacy mapping was compiled for the state of WA from surveys ranging in map scale from 1:20,000 to 1:2,000,000 (Schoknecht et al., 2004). The polygons are attributed with the soils and proportions of soils within polygons however individual soils were not explicitly spatially defined. These new disaggregated map products aim to incorporate expert soil surveyor knowledge embodied in legacy polygon soil maps, while providing re-interpreted soil spatial information at a scale that is more suited to on-ground decision making. Note: The DSMART-derived dissagregated legacy soil mapping products provide different spatial predictions of soil properties to the national TERN Soil Grid products derived by Cubist (data mining) and kriging based on site data by Viscarra Rossel et al. (Submitted). Where they overlap, the national prediction layers and DSMART products can be considered complementary predictions. They will offer varying spatial reliability (/ uncertainty) depending on the availability of representative site data (for national predictions) and the scale and expertise of legacy mapping. The national predictions and DSMART disaggregated layers have also been merged as a means to present the best available (lowest statistical uncertainty) data from both products (Clifford et al. In Prep). Previous versions of this collection contained Depths layers. These have been removed as the units do not comply with Global Soil Map specifications.

  • Categories  

    The Soil Facility produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (https://isric.org/projects/globalsoilmapnet/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). Attributes included: Available Water Capacity; Bulk Density - Whole Earth; Clay; Effective Cation Exchange Capacity; pH - CaCl2; Silt; Sand; Total Nitrogen; Total Phosphorus. Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 3.0 (CC By); Target data standard: GlobalSoilMap specifications; Format: GeoTIFF.

  • Categories    

    River sites were sampled during the summers of 2008/09 and 2009/10 in a survey designed to identify correlations between commonly used river condition variables and grazing land-use. Potential stream sites in northern Tasmania were screened by catchment size, northing and slope, and according to attributes aimed at minimising confounding variables, maintaining broad consistency in landscape and geomorphological context, and promoting independence among sites. A set of 27 survey sites was selected across a gradient from low to high proportion of land under grazing in their upstream catchments. Catchment sizes varied from 20-120 km2 and proportion grazing from 0-80%. Macroinvertebrates were sampled using Surber sampler. All macroinvertebrates within a 20% sub-sample identified to family and counted, with individuals from the insect orders Ephemeroptera, Plecoptera and Trichoptera identified to genus/species (by Laurie Cook, UTAS). Algal abundance was estimated at each site as the proportion of algal cover and as areal density of benthic chlorophyll a. Physical data variables collected were: water temperature, conductivity, turbidity, pH, total alkalinity, nitrate+nitrate, dissolved reactive phosphorus, total nitrogen, total phosphorus, overhead shading, the proportion of fine sediments within the sampled riffle zone, accumulated abstraction index and accumulated regulation index. For more information see: See Magierowski RH, Read SM, Carter SJB, Warfe DM, Cook LS, Lefroy EC and Davies PE. Inferring landscape-scale land-use impacts on rivers using data from mesocosm experiments and artificial neural networks. PLOS ONE.