Keyword

WIND SPEED

178 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
From 1 - 10 / 178
  • Categories    

    Data on weather conditions at the Daintree Rainforest, Cape Tribulation site collected between 2006 - 2014. Weather station data includes daily records of air temperature, wind speed, solar radiation, relative humidity and rainfall.

  • Categories    

    Data on weather conditions at the Robson Creek Rainforest site collected between 2010 - 2014. Weather station data includes daily records of air temperature, wind speed, solar radiation, relative humidity and rainfall.

  • Categories    

    Data on weather conditions at the Great Western Woodlands site collected between 2012 - 2016. Data includes half-hourly records of radiation and net radiation at 3 m (2012) and 36 m (2013 - 2016), mean wind speed and wind direction at 3 m (2012) and 36 m (2013 - 2016), air temperature and relative humidity at 3 m (2012) and 36 m (2013 - 2016), atmospheric pressure at 3 m (2012) and 36 m (2013 - 2016), ground heat flux at -8cm, and rainfall at 0.5m

  • Categories    

    Data on weather conditions at the Daintree Rainforest, Cow Bay site collected between 2008 - 2014. Weather station data includes daily records of air temperature, wind speed, solar radiation, relative humidity and rainfall.

  • Categories    

    Data on weather conditions at the Warra Tall Eucalypt site collected between 2004 - 2012. Data includes daily maximum and minimum temperatures, wind speed, wind direction, rainfall and humidity.

  • Categories    

    Dynamically downscaled high-resolution (~10 km spatial resolution) climate change projection data for Queensland. Downscaling was completed using CSIRO Conformal Cubic Atmospheric Model (CCAM) for two RCPs (RCP4.5 and RCP8.5) from 11 CMIP5 global coarse resolution models for period 1980-2099. The Queensland Future Climate Dashboard (www.longpaddock.qld.gov.au/qld-future-climate/ ) provides easy access to climate projection for Queensland. The dashboard allows users to explore, visualize and download the latest high-resolution climate modelling data for specific regions, catchments, disaster areas, local government areas and grid squares. Underlying data is provided via TERN for easy access for each of 11 downscaled models. The Queensland Future Climate Dataset provides high resolution data for over 30 different metrics grouped in six climate themes: (i) Mean Climate; (ii) Heatwaves; (iii) Extreme Temperature Indices; (iv) Extreme Precipitation Indices; (v) Droughts; and (vi) Floods. In addition selected variables at daily and monthly intervals are also available.

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer from bare earth using eddy covariance techniques.<br /><br /> This is a topographically flat area, primarily comprised of the following soil types: sandy loams, scattered clays, red brown earths, transitional red brown earth, sands over clay and deep sands. Stream valleys and layered soil and sedimentary materials are found across the landscape. <br /><br /> The flux station tower extends to 20m, however flux measurements are recorded from slightly lower than this. Mean annual precipitation from a nearby Bureau of Meteorology site measured 465 mm. Maximum temperatures ranged from 37.4°C (in January) to 16.6°C (in July), while minimum temperatures ranged from 29.0°C (in January) to 11.8°C (in July). Maximum temperatures varied on a seasonal basis by approximately 20.8°C and minimum temperatures by 17.2°C. <br /> The site is within a wider research area (60 x 60 km) that supports a network of flux stations, which have been in operation since late 2001 onwards.<br /><br /> This data is also available at http://data.ozflux.org.au .

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The flux station was established in 2017 in Wandoo Woodland, which is surrounded by broadacre farming. About 80% of the overstorey cover is <em>Eucalyptus accedens</em> Climate information comes from the nearby Pingelly BoM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445 mm with highest rainfall in June and July of 81 mm each month. Maximumum and minuimum annual rainfall is 775 and 217 mm, respectively. Maximum temperatures range from 31.9°C (in Jan) to 15.4°C (in July), while minimum temperatures range from 5.5°C (in July) to 16.0 °C (in Feb). The Noongar people are the traditional owners at Boyagin. <br />For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/boyagin-wandoo-woodland-supersite/ . <br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>.<br /> <br />The Cape Tribulation flux station was located in the land that is adjacent to the Daintree National Park which is part of the Wet Tropics World Heritage Area (WTWHA). The site is flanked to the west by coastal ranges rising to more than 1400m and to the east by the Coral Sea. The red clay loam podzolic soils are of metamorphic origin and have good drainage characteristics. The metamorphic rocks grade into granite boulders along Thompson Creek which runs along the northern boundary of the site. The crane site itself is gently sloping but the fetch area makes the site one of very complex terrain. The forest is classed as complex mesophyll vine forest (type 1a) and has an average canopy height of 25m. The dominant canopy trees belong to the Apocynaceae, Arecaceae, Euphorbiaceae, Lauraceae, Meliaceae, Myristicaceae and Myrtaceae families. The forest is continuous for several kilometres around the crane except for an area 300m due east of the crane, which is regrowth forest. Annual average rainfall at the site is around 5180mm and is strongly seasonal, with 66% falling between January and April (wet season). Mean daily temperature ranges from 26.6°C in February to 21.2°C in July. <br> Tropical cyclones are a frequent occurrence in Far North Queensland. These severe tropical storm systems are natural phenomena which play a major role in determining the ecology of Queensland's tropical lowland rainforests. In March 1999 Tropical Cyclone Rona (Category 3) passed over the Cape Tribulation area causing widespread damage (gusts >170km/h). At the site several large trees fell, nearly all of the remaining trees were stripped of leaves and the lianas towers were torn to ground level. <br> The flux station was mounted at the 45m level on the tower of the Australian Canopy Crane external link. The canopy crane is a Liebherr 91 EC, freestanding construction tower crane. The crane is 48.5 metres tall with a radius of 55 metres enabling access to 1 hectare of rainforest. Fluxes of heat, water vapour and carbon dioxide were measured using the open-path eddy covariance technique. Supplementary measurements above the canopy included temperature, humidity, rainfall, total solar; these measurements have continued post the flux system decommissioning. Heat flux, soil temperature and water content (time domain reflectometry) were measured in proximity to the flux station; these measurements have continued post the flux system decommissioning. Detailed biometric measurements are made at the crane site and all trees have regular (5 yearly) dbh measurements and canopy mapping carried out. Monitoring bores (3) are located on site. Leaf litter measurements are carried out on a monthly basis. <br> For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/daintree-rainforest-supersite/ .<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The site was classified as box woodland, dominated by two main Eucalypt species:<em>Eucalyptus microcarpa</em> (Grey Box) and <em>Eucalyptus leucoxylon</em> (Yellow Gum).<br /> Elevation of the site is close to 165 m and mean annual precipitation from a nearby Bureau of Meteorology site measured 558 mm. Maximum temperatures ranged from 29.8°C (in January) to 12.6°C (in July), while minimum temperatures ranged from 14.2°C (in February) to 3.2°C (in July). Maximum temperatures varied on a seasonal basis by approximately 17.2°C and minimum temperatures by 11.0°C.<br /><br />The instrument mast is 36m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation were measured above the canopy. Soil heat fluxes were measured and soil moisture content was gathered using time domain reflectometry. <br><br>