WIND SPEED
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
Gridded near-surface (2 and 10 m) daily average wind datasets for Australia from 1975 to 2018 have been constructed by interpolating observational data collected by the Australian Bureau of Meteorology (BoM). The new datasets span Australia at 0.05 × 0.05° resolution with a daily time step. The datasets were constructed by blending observational data collected at various heights using local surface roughness information.
-
Data on weather conditions at the Warra Tall Eucalypt site collected between 2004 - 2012. Data includes daily maximum and minimum temperatures, wind speed, wind direction, rainfall and humidity.
-
Data on weather conditions at the Daintree Rainforest, Cape Tribulation site collected between 2006 - 2014. Weather station data includes daily records of air temperature, wind speed, solar radiation, relative humidity and rainfall.
-
Data on weather conditions at the Daintree Rainforest, Cow Bay site collected between 2008 - 2014. Weather station data includes daily records of air temperature, wind speed, solar radiation, relative humidity and rainfall.
-
Data on weather conditions at the Great Western Woodlands site collected between 2012 - 2016. Data includes half-hourly records of radiation and net radiation at 3 m (2012) and 36 m (2013 - 2016), mean wind speed and wind direction at 3 m (2012) and 36 m (2013 - 2016), air temperature and relative humidity at 3 m (2012) and 36 m (2013 - 2016), atmospheric pressure at 3 m (2012) and 36 m (2013 - 2016), ground heat flux at -8cm, and rainfall at 0.5m
-
Data on weather conditions at the Robson Creek Rainforest site collected between 2010 - 2014. Weather station data includes daily records of air temperature, wind speed, solar radiation, relative humidity and rainfall.
-
Dynamically downscaled high-resolution (~10 km spatial resolution) climate change projection data for Queensland. Downscaling was completed using CSIRO Conformal Cubic Atmospheric Model (CCAM) for two RCPs (RCP4.5 and RCP8.5) from 11 CMIP5 global coarse resolution models for period 1980-2099. The Queensland Future Climate Dashboard (www.longpaddock.qld.gov.au/qld-future-climate/ ) provides easy access to climate projection for Queensland. The dashboard allows users to explore, visualize and download the latest high-resolution climate modelling data for specific regions, catchments, disaster areas, local government areas and grid squares. Underlying data is provided via TERN for easy access for each of 11 downscaled models. The Queensland Future Climate Dataset provides high resolution data for over 30 different metrics grouped in six climate themes: (i) Mean Climate; (ii) Heatwaves; (iii) Extreme Temperature Indices; (iv) Extreme Precipitation Indices; (v) Droughts; and (vi) Floods. In addition selected variables at daily and monthly intervals are also available.
-
This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in temperate eucalypt woodland using eddy covariance techniques. <br /><br /> The Great Western Woodlands (GWW) comprise a 16 million hectare mosaic of temperate woodland, shrubland and mallee vegetation in south-west Western Australia. The region has remained relatively intact since European settlement, owing to the variable rainfall and lack of readily accessible groundwater. The woodland component is globally unique in that nowhere else do woodlands occur at as little as 220 mm mean annual rainfall. Further, other temperate woodlands around the world have typically become highly fragmented and degraded through agricultural use. The Great Western Woodlands Site was established in 2012 in the Credo Conservation Reserve. The site is in semi-arid woodland and was operated as a pastoral lease from 1907 to 2007. The core 1 ha plot is characterised by <em>Eucalyptus salmonophloia</em> (salmon gum), with <em>Eucalyptus salubris</em> and <em>Eucalyptus clelandii</em> dominating other research plots. The flux station is located in Salmon gum woodland. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/great-western-woodlands-supersite/ . <br /><br />This data is also available at http://data.ozflux.org.au .
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br><em>Eucalyptus obliqua</em> forests dominate the vegetation below 650 m where they exist as fire-maintained communities. On fertile soils these forests attain mature heights in excess of 55 m: the tallest <em>E. obliqua</em> reaches a height of 90 m. The flux station is installed in a stand of tall, mixed-aged <em>E. obliqua</em> forest (77 and >250 years-old) with a rainforest understorey and a dense man-fern (<em>Dicksonia antarctica</em>) ground-layer, on a small flat of elevation 100 m adjacent to the Huon River. The understorey vegetation progresses from wet sclerophyll (dominated by <em>Pomaderris apatala</em> and <em>Acacia dealbata</em>) to rainforest (dominated by <em>Nothofagus cunninghamii</em>, <em>Atherosperma moschatum</em>, <em>Eucryphia lucida</em> and <em>Phyllocladus aspleniifolius</em>) with increasing time intervals between fire events. The site supports prodigous quantities of coarse woody debris as is characteristic of these fire-maintained eucalypt forests on fertile sites in southern Tasmania. The soil at the flux site is derived from Permian mudstone and has a gradational profile with a dark brown organic clayey silt topsoil overlying a yellow brown clay. The climate is classified as temperate with a mild summer and no dry season. Mean annual precipitation is 1700 mm with a relatively uniform seasonal distribution. Summer temperatures peak in January (8.4 °C to 19.2 °C) with winter temperatures reaching their lowest in July (2.6 °C to 8.4 °C).</br> <br>The instruments are mounted at the top of an 80 m tall guyed steel lattice tower. Supplementary measurements above the canopy include temperature, humidity, windspeed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation. An open-path gas analyser (EC150) was replaced by a closed-path gas analyser (EC155) at the end of January 2015. Soil moisture content is measured using time domain reflectometry. Soil heat fluxes and temperature are also measured. Micro-meteorology (CO<sub>2</sub>, H<sub>2</sub>O, energy fluxes) and meteorology (temperature, humidity, wind speed and direction, rainfall) were measured from 2013 to late 2016, but the dataset is incomplete due to ongoing problems since changing the open-path IRGA to a closed path system (CPEC200) during 2015. Soil data (moisture, heat flux, temperature) are complete for the time period.</br>
-
This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>.<br /> <br /> The Gingin site was established in June 2011 by CSIRO and is now managed by Edith Cowan University Centre for Ecosystem Management. The site is a natural woodland of high species diversity. The overstorey is dominated by Banksia spp. mainly B. menziesii, B. attenuata, and B. grandis with a height of around 7m and leaf area index of about 0.8. There are occasional stands of eucalypts and acacia that reach to 10m and have a denser foliage cover. There are many former wetlands dotted around the woodland, most of which were inundated all winter and some had permanent water 30 years ago. The watertable has now fallen below the base of these systems and they are disconnected and are no longer permanently wet. The fine sediments, sometimes diatomaceous, hold water and they have perched watertables each winter. There is a natural progression of species accompanying this process as they gradually become more dominated by more xeric species. The soils are mainly Podosol sands, with low moisture holding capacity. Field capacity typically about 8 to 10%, and in summer these generally hold less than 2% moisture. The water tabl is at about 8.5 m below the surface, and a WA Dept of water long-term monitoring piezometer is near the base of the tower. The instrument mast is 14m tall, with the eddy covariance instruments mounted at 14.8m. Fluxes of carbon dioxide, water vapour and heat are quantified with open-path eddy covariance instrumentation. Ancillary measurements include temperature, air humidity, wind speed and direction, precipitation, incoming and outgoing shortwave radiation, incoming and outgoing long wave radiation, incoming total and diffuse PAR and reflected PAR. Soil water content and temperature are measured at six soil depths. Surface soil heat fluxes are also measured. A COSMOS Cosmic ray soil moisture instrument is installed, along with a logged piezometer, and nested piezometers installed with short screens for groundwater profile sampling. To monitor the watertable gradient, piezometers will be installed 500 m esat and west of the tower. <br/> For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/gingin-banksia-woodland-supersite/. <br /><br />