Keyword

Percent

442 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
From 1 - 10 / 442
  • Categories    

    The Sentinel-2 seasonal fractional ground cover product shows the proportion of bare ground, green and non-green ground cover and is derived directly from the Sentinel-2 seasonal fractional cover product, also produced by Queensland's Remote Sensing Centre. The seasonal fractional cover product is a spatially explicit raster product, which predicts vegetation cover at medium resolution (10&nbsp;m per-pixel) for each 3-month calendar season. However, the seasonal fractional cover product does not distinguish tree and mid-level woody foliage and branch cover from green and dry ground cover. As a result, in areas with even minimal tree cover (>15%), estimates of ground cover become uncertain. With the development of the fractional cover time-series, it has become possible to derive an estimate of ‘persistent green’ based on time-series analysis. The persistent green vegetation product provides an estimate of the vertically-projected green-vegetation fraction where vegetation is deemed to persist over time. These areas are nominally woody vegetation. This separation of the 'persistent green' from the fractional cover product, allows for the adjustment of the underlying spectral signature of the fractional cover image and the creation of a resulting 'true' ground cover estimate for each season. The estimates of cover are restricted to areas of <60% woody vegetation. Currently, the persistent green product has only been produced at 30&nbsp;m pixel resolution based on Landsat imagery, resulting in this Sentinel-2 seasonal ground cover product having a medium 30&nbsp;m pixel resolution also. This is an experimental product which has not been fully validated. This product is similar to the <a href="https://portal.tern.org.au/metadata/23884 ">Seasonal ground cover - Landsat, JRSRP algorithm Version 3.0, Australia Coverage</a> which is based on a different satellite sensor.

  • Categories    

    This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product at https://portal.tern.org.au/metadata/23884. The seasonal fractional ground cover product shows the proportion of bare ground, green and non-green ground cover and is derived directly from the seasonal fractional cover product, also produced by Queensland's Remote Sensing Centre. The seasonal fractional cover product is a spatially explicit raster product, which predicts vegetation cover at medium resolution (30 m per-pixel) for each 3-month calendar season. However, the seasonal fractional cover product does not distinguish tree and mid-level woody foliage and branch cover from green and dry ground cover. As a result, in areas with even minimal tree cover (>15%), estimates of ground cover become uncertain. With the development of the fractional cover time-series, it has become possible to derive an estimate of ‘persistent green’ based on time-series analysis. The persistent green vegetation product provides an estimate of the vertically-projected green-vegetation fraction where vegetation is deemed to persist over time. These areas are nominally woody vegetation. This separation of the 'persistent green' from the fractional cover product, allows for the adjustment of the underlying spectral signature of the fractional cover image and the creation of a resulting 'true' ground cover estimate for each season. The estimates of cover are restricted to areas of <60% woody vegetation. Currently, this is an experimental product which has not been fully validated.

  • Categories    

    This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product at https://portal.tern.org.au/metadata/23881. The seasonal fractional cover product shows representative values for the proportion of bare, green and non-green cover, created from a time series of Sentinel 2 imagery. It is a spatially explicit raster product, which predicts vegetation cover at medium resolution (10 m per-pixel) for each 3-month calendar season. The green and non-green fractions may include a mix of woody and non-woody vegetation. This model was originally developed for Landsat imagery, but has been adapted for us with Sentinel-2 imagery to produce a 10 m resolution equivalent product.

  • Categories    

    This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product at https://portal.tern.org.au/metadata/23883. The monthly fractional cover product shows representative values for the proportion of bare ground, green and non-green ground cover across a month. It is a spatially explicit raster product, which predicts vegetation cover at medium resolution (30 m per-pixel) for each month. This dataset consists of medoid-composited monthly fractional cover created from a combined Landsat 8 and Sentinel-2 time series.

  • Categories    

    This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product at https://portal.tern.org.au/metadata/23880. The seasonal fractional cover product shows representative values for the proportion of bare, green and non-green cover across a season. It is a spatially explicit raster product, which predicts vegetation cover at medium resolution (30 m per-pixel) for each 3-month calendar season. The green and non-green fractions may include a mix of woody and non-woody vegetation.

  • Categories    

    Three maps are available: 1) foliage projective cover, 2) forest extent, attributed with the foliage projective cover and 3) accuracy of the extent maps, which also acts as masks of forest and other wooded lands. Each pixel in map 1 estimates the fraction of the ground covered by green foliage. Each pixel in map 2 shows two pieces of information. The first is a classification of whether the vegetation is forest or not. The pixels classified as forest are attributed with the second piece of information: the foliage projective cover. Each pixel in map 3 is a class that provides information on the classification accuracies of the woody extent. These maps are derived from Landsat.

  • Categories    

    Experimental sites were established in the northern wheat-growing district of western Australia (Lat -29.66°, Long 116.18°) in August 2017, and monitored through to November 2019. We selected five planted old field sites with similar soil types and vegetation composition. Old fields were planted with York gum (Eucalyptus loxophleba Benth.) and dominant shrubs as understorey. At the time of sampling in 2017, vegetation age ranged from 8–13 years and distance from remnant measured 279 m (± 162 m). We established two control and two treatment plots, each measuring 5 m x 5 m, in the interrows of five planted old field sites. Both treatments were randomly assigned to plots within each site. Between August and early November 2017, we measured a total of 30 response variables at each of the control and treatment plots. Response variables included soil physical and chemical properties (bulk density, penetration resistance, soil moisture, nitrogen and carbon pools), microbial biomass, decomposition rate of roiboos and green tea as per the standardized Tea Bag Index (TBI) protocol, herbaceous vegetation cover and richness, and ant abundance and richness, as well as abundance and richness of ant functional groups.

  • Categories    

    The forest fuel survey dataset comprises site-level summary data from the well-designed fuel load surveys across 48 AusPlots Forests- 1-ha monitoring plots across Australia. Data presented here includes data on the surface, near-surface, and elevated fuel loads for each of the Forest Ausplots. It includes iButton data on 1) temperature and humidity, 2) data on litterfall and 3) decomposition rates. We also provide additional information on soil nutrient data, species composition of the understorey and midstorey, and panorama photos from the plot centre. This dataset is the second version of the <i> AusPlots Forest Fuel Survey site-level data summary, 2014 - 2015. Version 1.0.0. Terrestrial Ecosystem Research Network.</i> (dataset). <em>https://doi.org/10.25901/efnh-sk06</em>

  • Categories    

    This dataset lists land surface characteristics observed in Rangeland sites across Australia by the TERN Ecosystem Surveillance team, using standardised AusPlots methodologies. <br /> Land surface observations are collected at each site as part of the AusPlots method. At each site, observations on ground cover, lithology, erosion (state, extent, and human accelerated), surface drainage, microrelief, aspect and angle are recorded as part of the Ausplots Ground cover and Plot description methods.<br />

  • Categories    

    In 1963, the Glen Canyon Dam, in Hite Utah was completed, creating the Lake Powell reservoir along the Colorado River. The water levels of Lake Powell peaked in 1983 and have declined since, releasing over-pressure on the underlying sediment. This release in over-pressure created mud volcanoes, structures along the shoreline made of cavities that allow fluid and gases to rise to the surface and escape. Green house gases including methane are released from these structures, and to better understand how development of natural wetlands can result in unintended increased levels of greenhouse gas emissions, we asked 1) how much of each gas is generated or and whether the amount of each gas is changing through time and 2) how are these gases forming in the subsurface? We first measured the amounts of carbon dioxide (CO2), methane (CH4), and air (N) in volcano gas samples collected in 2014, 2015, and 2016. We found that from 2014 through 2016, methane levels from these volcanoes fluctuated significantly. In 2016, we looked at the amounts of carbon and hydrogen isotopes in the methane, which told us the gas is generated from microorganisms feeding on organic matter and is released during water-level fluctuations. We looked at mud volcanoes only located along the Lake Powell marina delta in Hite, Utah. The data spans geological structures restricted to one marina delta.