From 1 - 7 / 7
  • Categories    

    The dataset consists of composited seasonal surface reflectance images (4 seasons per year) created from the full time series of Sentinel-2 imagery. The imagery has been composited over a season to produce imagery which is representative of that period, using techniques which will reduce contamination by cloud and other problems. This creates a regular time series of reflectance values which captures the variability at seasonal time scales. The benefits are a regular time series with minimal missing data or contamination from various sources of noise as well as data reduction. Each season has exactly one value (per band) for each pixel (or is null, i.e., missing), and the value for that season is assumed to be the representative of the whole season. The algorithm is based on the medoid (in reflectance space) over the time period (the medoid is a multi-dimensional analogue of the median), which is robust against extreme values. The seasonal surface reflectance is of the 6 TM-like bands (Blue, Green, Red, NIR, SWIR1, SWIR2), all at 10 m resolution. This dataset is intended to be a 10 m equivalent of the Landsat surface reflectance, using only Sentinel-2. The two 20m bands are resampled using cubic convolution. The pixel values are scaled reflectance, as 16-bit integers. To retrieve physical reflectance values, the pixel values should be multiplied by 0.0001.

  • Categories    

    The seasonal fractional cover product shows representative values for the proportion of bare, green and non-green cover, created from a time series of Sentinel-2 imagery. It is a spatially explicit raster product, which predicts vegetation cover at medium resolution (10 m per-pixel) for each 3-month calendar season. The green and non-green fractions may include a mix of woody and non-woody vegetation. This model was originally developed for Landsat imagery, but has been adapted for Sentinel-2 imagery to produce a 10 m resolution equivalent product. A 3 band (byte) image is produced: band 1 – bare ground fraction (in percent), band 2 - green vegetation fraction (in percent), band 3 – non-green vegetation fraction (in percent). The no data value is 255.

  • Categories    

    The seasonal fractional cover product shows representative values for the proportion of bare, green and non-green cover, created from a time series of Sentinel 2 imagery. It is a spatially explicit raster product, which predicts vegetation cover at medium resolution (10 m per-pixel) for each 3-month calendar season. The green and non-green fractions may include a mix of woody and non-woody vegetation. This model was originally developed for Landsat imagery, but has been adapted for us with Sentinel-2 imagery to produce a 10 m resolution equivalent product.

  • Categories    

    The monthly fractional cover product shows representative values for the proportion of bare ground, green and non-green ground cover across a month. It is a spatially explicit raster product, which predicts vegetation cover at medium resolution (30 m per-pixel) for each month. This dataset consists of medoid-composited monthly fractional cover created from a combined Landsat 8 and Sentinel-2 time series. A 3 band (byte) image is produced: band 1 – bare ground fraction (in percent), band 2 - green vegetation fraction (in percent), band 3 – non-green vegetation fraction (in percent). The no data value is 255.

  • Categories    

    The monthly fractional cover product shows representative values for the proportion of bare ground, green and non-green ground cover across a month. It is a spatially explicit raster product, which predicts vegetation cover at medium resolution (30 m per-pixel) for each month. This dataset consists of medoid-composited monthly fractional cover created from a combined Landsat 8 and Sentinel-2 time series.

  • Categories    

    <p>This dataset shows the crops grown in Queensland's main cropping areas, for the winter and summer growing-seasons, from 1988 to the current year. The winter growing-season is defined as June to October, and the summer growing-season is November to May. The basis of the maps is imagery from the (when available) Landsat-5 TM, Landsat-7 ETM+, Landsat-(8,9) OLI, and Sentinel-2(A,B) satellites; MODIS MOD13Q1 imagery was used as a backup in the case of large, temporal data gaps. Clusters of temporally similar pixels, termed 'segments', were identified in the imagery for each growing season, and served as an approximation of field boundaries. Per-segment phenological information, derived from the satellite imagery, was then combined with a tiered, tree-based statistical classifier, using >10000 field observations as training data, and >4000 independent observations for validation. The dataset supersedes a former crop-mapping effort <a href ="https://doi.org/10.3390/rs8040312">(Schmidt et al., 2016)</a>.</p>

  • Categories    

    <p>This dataset provides accurate, high-resolution (30 m) / high-frequency (monthly) / continuous (no gaps due to cloud) actual evapotranspiration (AET) for Australia using the CMRSET algorithm. The CMRSET algorithm uses reflective remotely sensed indices to estimate AET from potential evapotranspiration (PET; calculated using daily gridded meteorological data generated by the Bureau of Meteorology). Blending high-resolution / low-frequency AET estimates (e.g., Landsat and Sentinel-2) with low-resolution / high-frequency AET estimates (e.g., MODIS and VIIRS) results in AET data that are high-resolution / high-frequency / continuous (no gaps due to cloud) and accurate. These are all ideal characteristics when calculating the water balance for a wetland, paddock, river reach, irrigation area, landscape or catchment. </p><p> Accurate AET information is important for irrigation, food security and environmental management. Like many other parts of the world, water availability in Australia is limited and AET is the largest consumptive component of the water balance. In Australia 70% of available water is used for crop and pasture irrigation and better monitoring will support improved water use efficiency in this sector, with any water savings available as environmental flows. Additionally, ground-water dependent ecosystems (GDE) occupy a small area yet are "biodiversity hotspots", and knowing their water needs allows for enhanced management of these critical areas in the landscape. Having high-resolution, frequent and accurate AET estimates for all of Australia means this AET data source can be used to model the water balance for any catchment / groundwater system in Australia. </p><p> Details of the CMRSET algorithm and its independent validation are provided in Guerschman, J.P., McVicar, T.R., Vleeshouwer, J., Van Niel, T.G., Peña-Arancibia, J.L. and Chen, Y. (2022) Estimating actual evapotranspiration at field-to-continent scales by calibrating the CMRSET algorithm with MODIS, VIIRS, Landsat and Sentinel-2 data. Journal of Hydrology. 605, 127318, doi:10.1016/j.jhydrol.2021.127318</p> <p> <i>We strongly recommend users to use the TERN CMRSET AET V2.2</i>. Details of the TERN CMRSET AET V2.2 data product generation are provided in McVicar, T.R., Vleeshouwer, J., Van Niel, T.G., Guerschman, J.P., Peña-Arancibia, J.L. and Stenson, M.P. (2022) Generating a multi-decade gap-free high-resolution monthly actual evapotranspiration dataset for Australia using Landsat, MODIS and VIIRS data in the Google Earth Engine platform: Development and use cases. Journal of Hydrology (In Preparation).