Foliage Projective Cover - Sentinel-2, DES algorithm, QLD Coverage
For some time, Remote Sensing Sciences, has produced Foliage Projective Cover (FPC) using a model applied to Landsat surface reflectance imagery, calibrated by field observations. An updated model was developed which relates field measurements of FPC to 2-year time series of Normalized Difference Vegetation Index (NDVI) computed from Landsat seasonal surface reflectance composites. The model is intended to be applied to Landsat and Sentinel-2 satellite imagery, given their similar spectral characteristics. However, due to insufficient field data coincident with the Sentinel-2 satellite program, the model was fitted on Landsat imagery using a significantly expanded, national set of field data than was used for the previous Landsat FPC model fitting. The FPC model relates the field measured green fraction of mid- and over-storey foliage cover to the minimum value of NDVI calculated from 2-years of Landsat seasonal surface reflectance composites. NDVI is a standard vegetation index used in remote sensing which is highly correlated with vegetation photosynthesis. The model is then applied to analogous Sentinel-2 seasonal surface reflectance composites to produce an FPC image at Sentinel-2 spatial resolution (i.e. 10 m) using the radiometric relationships established between Sentinel-2 and Landsat in Flood (2017). This is intended to represent the FPC for that 2-year period rather than any single date, hence the date range in the dataset file name. The dataset is generally expected to provide a reasonable estimate of the range of FPC values for any given stand of woody vegetation, but it is expected there will be over- and under-estimation of absolute FPC values for any specific location (i.e. pixel) due to a range of factors. The FPC model is sensitive to fluctuations in vegetation greenness, leading to anomalies such as high FPC on irrigated pastures or locations with very green herbaceous or grass understoreys. A given pixel in the FPC image, represents the predicted FPC in the season with the least green/driest vegetation cover over the 2-year period assumed to be that with the least influence of seasonally variable herbaceous vegetation and grasses on the more seasonally stable woody FPC estimates. The two-year period was used partly because it represents a period relative to tree growth but was also constrained due to the limited availability of imagery in the early Sentinel-2 time series. The FPC dataset is constrained by the woody vegetation extent dataset for the FPC year.
Simple
Identification info
- Date (Creation)
- 2018-01-01
- Date (Publication)
- 2024-09-03
- Date (Revision)
- 2024-09-23
- Edition
- 1.0
Publisher
Custodian
Author
- Website
- https://www.tern.org.au/
- Purpose
- Foliage projective cover (FPC) is a metric of vegetation cover used in many Australian vegetation classification frameworks. The Statewide Land and Trees Study (SLATS) uses the FPC metric derived from Sentinel-2 imagery to provide broad estimates about the range of tree and shrub densities represented in woody vegetation across Queensland.
- Credit
- We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging.
- Status
- Completed
Point of contact
Spatial resolution
- Spatial resolution
- 10
- Topic category
-
- Environment
- Imagery base maps earth cover
Extent
- Description
- State of Queensland.
Temporal extent
- Time period
- 2018-01-01 2022-12-31
- Maintenance and update frequency
- Annually
- GCMD Science Keywords
- ANZSRC Fields of Research
- TERN Platform Vocabulary
- TERN Instrument Vocabulary
- TERN Parameter Vocabulary
- QUDT Units of Measure
- GCMD Horizontal Resolution Ranges
- GCMD Temporal Resolution Ranges
- Keywords (Discipline)
-
- foliage projective cover
Resource constraints
- Use limitation
- The Creative Commons Attribution 4.0 International (CC BY 4.0) license allows others to copy, distribute, display, and create derivative works provided that they credit the original source and any other nominated parties. Details are provided at https://creativecommons.org/licenses/by/4.0/
- File name
- 88x31.png
- File description
- CCBy Logo from creativecommons.org
- File type
- png
- Title
- Creative Commons Attribution 4.0 International Licence
- Alternate title
- CC-BY
- Edition
- 4.0
- Access constraints
- License
- Use constraints
- Other restrictions
- Other constraints
- TERN services are provided on an "as-is" and "as available" basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure. <br />Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN. <br /><br />Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting
- Other constraints
- Please cite this dataset as {Author} ({PublicationYear}). {Title}. {Version, as appropriate}. Terrestrial Ecosystem Research Network. Dataset. {Identifier}.
Resource constraints
- Classification
- Unclassified
Distribution Information
Distributor
Distributor
- Distribution format
-
- OnLine resource
- Cloud Optimised GeoTIFFs - Foliage Projective Cover
- OnLine resource
-
Foliage Projective Cover
foliage_projective_cover
- OnLine resource
- Landscape Data Visualiser - Foliage Projective Cover
- OnLine resource
- ro-crate-metadata.json
Data quality info
- Hierarchy level
- Dataset
- Other
- <br>The data set is generally expected to provide a reasonable estimate of the range of FPC values for any given stand of woody vegetation, but it is expected there will be over- and under-estimation of absolute FPC values for any specific location (i.e. pixel) due to a range of factors. Error is also expected in areas of consistent cloud cover and urban areas, due to interference from the cloud mask.</br> <br>The FPC model is sensitive to fluctuations in vegetation greenness, leading to anomalies such as high FPC in locations with consistently green herbaceous or grass understoreys over the 2-year period.</br> <br>The FPC is reset to 'no-data' for pixels which are non-woody in the Woody Extent data set. Woody patches smaller than the Woody Extent Minimum Mapping Unit (0.5 ha) will have FPC='No Data'. Likewise, nonwoody patches smaller than the MMU may have a non-zero predicted FPC.</br> <br></br>
Report
Result
- Statement
- The model Root Mean Square Error (RMSE) is 9.1 FPC points.
Resource lineage
- Statement
- <br>The FPC model was developed using: The national data set of historic star-transect field data (Muir et al, 2011) and two-year (eight-season) time series of Landsat seasonal surface reflectance composites.</br> <br>Landsat imagery was downloaded from the United States Geological Survey (USGS) as radiance and converted to surface reflectance using Flood, 2013a, followed by seasonal surface reflectance using Flood, 2013b.</br> <br>The FPC model was fit between the field measured green fraction of mid- and over-storey foliage cover and the minimum value of NDVI calculated from 2-years of Landsat seasonal surface reflectance composites. This is expected to represent the driest pixel over the two-year period, where there is the least influence of green understorey on the surface reflectance.</br> <br>Sentinel-2 seasonal surface reflectance mosaics were computed from the Sentinel-2 source data using the same procedures as for Landsat (Flood, 2013a; 2013b).</br> <br>The FPC model was applied to a 2-year (8 season) time series of Sentinel-2 seasonal surface reflectance composites to produce an FPC image.</br> <br>Finally, the 2018 Woody Extent data set was used to reset FPC values in non-woody regions to 'no data' to eliminate over-estimation of FPC in green pastures, cropping regions and other nonwoody landscapes.</br>
- Hierarchy level
- Dataset
- Title
- Flood N. (2013a). An operational scheme for deriving standardised surface reflectance from Landsat TM/ETM+ and SPOT HRG imagery for Eastern Australia. Remote Sensing, 5(1): 83-109
- Website
-
https://doi.org/10.3390/rs5010083
Method documentation
- Title
- Flood N. (2013b). Seasonal composite Landsat TM/ETM+ images using the medoid (a multi-dimensional median). Remote Sensing, 5(12): 6481-6500
- Website
-
https://doi.org/10.3390/rs5126481
Method documentation
- Title
- Armston J.D., Denham R.J., Danaher T.J., Scarth P.F. and Moffiet T. (2008). Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM+ imagery for Queensland, Australia. Journal of Applied Remote Sensing, 3: 033540-28
- Website
-
https://doi.org/10.1117/1.3216031
Method documentation
- Title
- Muir J., Schmidt M., Tindall D., Trevithick R., Scarth P., and Stewart J. (2011). Field measurement of fractional ground cover: a technical handbook supporting ground cover monitoring for Australia. Technical report, Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, ACT
- Website
-
https://www.researchgate.net/publication/236022381_Field_measurement_of_fractional_ground_cover
Method documentation
Reference System Information
- Reference system identifier
- EPSG/EPSG:3577
- Reference system type
- Geodetic Geographic 2D
Metadata
- Metadata identifier
-
urn:uuid/c65ad708-e270-431a-bb5b-13f1a4ec13db
- Title
- TERN GeoNetwork UUID
- Language
- English
- Character encoding
- UTF8
Point of contact
Type of resource
- Resource scope
- Dataset
- Metadata linkage
-
https://geonetwork.tern.org.au/geonetwork/srv/eng/catalog.search#/metadata/c65ad708-e270-431a-bb5b-13f1a4ec13db
Point-of-truth metadata URL
- Date info (Creation)
- 2023-10-09T00:00:00
- Date info (Revision)
- 2024-09-23T00:00:00
Metadata standard
- Title
- ISO 19115-1:2014/AMD 1:2018 Geographic information - Metadata - Fundamentals
- Edition
- 1
Metadata standard
- Title
- ISO/TS 19115-3:2016
- Edition
- 1.0
Metadata standard
- Title
- ISO/TS 19157-2:2016
- Edition
- 1.0
- Title
- Terrestrial Ecosystem Research Network (TERN) Metadata Profile of ISO 19115-3:2016 and ISO 19157-2:2016
- Date (published)
- 2021
- Edition
- 1.0