MSI
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product at https://portal.tern.org.au/metadata/23881. The seasonal fractional cover product shows representative values for the proportion of bare, green and non-green cover, created from a time series of Sentinel 2 imagery. It is a spatially explicit raster product, which predicts vegetation cover at medium resolution (10 m per-pixel) for each 3-month calendar season. The green and non-green fractions may include a mix of woody and non-woody vegetation. This model was originally developed for Landsat imagery, but has been adapted for us with Sentinel-2 imagery to produce a 10 m resolution equivalent product.
-
<p>The seasonal fractional cover product shows representative values for the proportion of bare, green and non-green cover, created from a time series of Sentinel-2 imagery. It is a spatially explicit raster product, which predicts vegetation cover at medium resolution (10 m per-pixel) for each 3-month calendar season across Eastern and Central Australia from 2016 to present. The green and non-green fractions may include a mix of woody and non-woody vegetation.</p> <p>This model was originally developed for Landsat imagery, but has been adapted for Sentinel-2 imagery to produce a 10 m resolution equivalent product.</p> <p>A 3 band (byte) image is produced:</p> <ul> <li>band 1 - bare ground fraction (in percent),</li> <li>band 2 - green vegetation fraction (in percent),</li> <li>band 3 - non-green vegetation fraction (in percent).</li> </ul> <p>The no data value is 255.</p>
-
The dataset consists of composited seasonal surface reflectance images (4 seasons per year) created from the full time series of Sentinel-2 imagery. The imagery has been composited over a season to produce imagery which is representative of that period, using techniques which will reduce contamination by cloud and other problems. This creates a regular time series of reflectance values which captures the variability at seasonal time scales. The benefits are a regular time series with minimal missing data or contamination from various sources of noise as well as data reduction. Each season has exactly one value (per band) for each pixel (or is null, i.e., missing), and the value for that season is assumed to be the representative of the whole season. The algorithm is based on the medoid (in reflectance space) over the time period (the medoid is a multi-dimensional analogue of the median), which is robust against extreme values. The seasonal surface reflectance is of the 6 TM-like bands (Blue, Green, Red, NIR, SWIR1, SWIR2), all at 10 m resolution. This dataset is intended to be a 10 m equivalent of the Landsat surface reflectance, using only Sentinel-2. The two 20m bands are resampled using cubic convolution. The pixel values are scaled reflectance, as 16-bit integers. To retrieve physical reflectance values, the pixel values should be multiplied by 0.0001.
-
This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product at https://portal.tern.org.au/metadata/23883. The monthly fractional cover product shows representative values for the proportion of bare ground, green and non-green ground cover across a month. It is a spatially explicit raster product, which predicts vegetation cover at medium resolution (30 m per-pixel) for each month. This dataset consists of medoid-composited monthly fractional cover created from a combined Landsat 8 and Sentinel-2 time series.
-
Version 1 of the Southeast Queensland Bioregion Spatial BioCondition dataset is superseded by the Version 2 dataset that can be found at: https://doi.org/10.25901/r976-1v85.<br><br> Version 1 was an initial demonstration version. The version 1 data has been removed from publication to negate temporal comparisons between v1 (2019) and v2 (2021), as this is a future goal for the product but still in development phase. This was a spatial dataset comprising predictions of vegetation condition for biodiversity for the Southeast Queensland Bioregion. The dataset was created using a gradient boosting decision tree (GBDT) model based on eight vegetation specific remote sensing (RS) datasets and 17,000 training sites of known vegetation community and condition state. Condition score was modelled as a function of the difference in the RS space within homogeneous vegetation communities. The product was intended to represent predicted BioCondition for year 2019 rather than any single date.
-
For some time, Remote Sensing Sciences, has produced Foliage Projective Cover (FPC) using a model applied to Landsat surface reflectance imagery, calibrated by field observations. An updated model was developed which relates field measurements of FPC to 2-year time series of Normalized Difference Vegetation Index (NDVI) computed from Landsat seasonal surface reflectance composites. The model is intended to be applied to Landsat and Sentinel-2 satellite imagery, given their similar spectral characteristics. However, due to insufficient field data coincident with the Sentinel-2 satellite program, the model was fitted on Landsat imagery using a significantly expanded, national set of field data than was used for the previous Landsat FPC model fitting. The FPC model relates the field measured green fraction of mid- and over-storey foliage cover to the minimum value of NDVI calculated from 2-years of Landsat seasonal surface reflectance composites. NDVI is a standard vegetation index used in remote sensing which is highly correlated with vegetation photosynthesis. The model is then applied to analogous Sentinel-2 seasonal surface reflectance composites to produce an FPC image at Sentinel-2 spatial resolution (i.e. 10 m) using the radiometric relationships established between Sentinel-2 and Landsat in Flood (2017). This is intended to represent the FPC for that 2-year period rather than any single date, hence the date range in the dataset file name. The dataset is generally expected to provide a reasonable estimate of the range of FPC values for any given stand of woody vegetation, but it is expected there will be over- and under-estimation of absolute FPC values for any specific location (i.e. pixel) due to a range of factors. The FPC model is sensitive to fluctuations in vegetation greenness, leading to anomalies such as high FPC on irrigated pastures or locations with very green herbaceous or grass understoreys. A given pixel in the FPC image, represents the predicted FPC in the season with the least green/driest vegetation cover over the 2-year period assumed to be that with the least influence of seasonally variable herbaceous vegetation and grasses on the more seasonally stable woody FPC estimates. The two-year period was used partly because it represents a period relative to tree growth but was also constrained due to the limited availability of imagery in the early Sentinel-2 time series. The FPC dataset is constrained by the woody vegetation extent dataset for the FPC year.
-
This is Version 1 of the Brigalow Belt Bioregion Spatial BioCondition dataset. It is superseded by the Version 2 dataset that can be found at: https://doi.org/10.25901/rnqz-cn10.<br><br> This is a spatial dataset comprising predictions of vegetation condition for biodiversity for the brigalow belt bioregion. The dataset was created using a gradient boosting decision tree (GBDT) model based on eight vegetation specific remote sensing (RS) datasets and 17,000 training sites of known vegetation community and condition state. Condition score was modelled as a function of the difference in the RS space within homogeneous vegetation communities. The product is intended to represent predicted BioCondition for year 2019 rather than any single date.
-
The woody vegetation extent for Queensland is attributed with an estimated age in years since the last significant disturbance. The method uses a sequential Conditional Random Fields classifier applied to Landsat time series starting 1988 to predict woody cover over the time period. A set of heuristic rules is used to detect and track regrowing woody vegetation in the time series of woody probabilities and record the approximate start and end dates of the most recent regrowth event. Regrowth detection is combined with the Statewide Land and Trees Study (SLATS) Landsat historic clearing data to provide a preliminary estimate of age since disturbance for each woody pixel in the woody extent. The 'last disturbance' may be due to a clearing event or other disturbance such as fire, flood, drought-related death etc. Note that not all recorded disturbances may result in complete loss of woody vegetation, so the estimated age since disturbance does not always represent the age of the ecosystem. The age since disturbance product is derived from multiple satellite image sources and derived products which represent different scales and resolutions: Landsat (30 m), Sentinel-2 (10 m) and Earth-i (1 m).
-
<p>This dataset provides accurate, high-resolution (30 m) / high-frequency (monthly) / continuous (no gaps due to cloud) actual evapotranspiration (AET) for Australia using the CMRSET algorithm. The CMRSET algorithm uses reflective remotely sensed indices to estimate AET from potential evapotranspiration (PET; calculated using daily gridded meteorological data generated by the Bureau of Meteorology). Blending high-resolution / low-frequency AET estimates (e.g., Landsat and Sentinel-2) with low-resolution / high-frequency AET estimates (e.g., MODIS and VIIRS) results in AET data that are high-resolution / high-frequency / continuous (no gaps due to cloud) and accurate. These are all ideal characteristics when calculating the water balance for a wetland, paddock, river reach, irrigation area, landscape or catchment. </p><p> Accurate AET information is important for irrigation, food security and environmental management. Like many other parts of the world, water availability in Australia is limited and AET is the largest consumptive component of the water balance. In Australia 70% of available water is used for crop and pasture irrigation and better monitoring will support improved water use efficiency in this sector, with any water savings available as environmental flows. Additionally, ground-water dependent ecosystems (GDE) occupy a small area yet are "biodiversity hotspots", and knowing their water needs allows for enhanced management of these critical areas in the landscape. Having high-resolution, frequent and accurate AET estimates for all of Australia means this AET data source can be used to model the water balance for any catchment / groundwater system in Australia. </p><p> Details of the CMRSET algorithm and its independent validation are provided in Guerschman, J.P., McVicar, T.R., Vleeshouwer, J., Van Niel, T.G., Peña-Arancibia, J.L. and Chen, Y. (2022) Estimating actual evapotranspiration at field-to-continent scales by calibrating the CMRSET algorithm with MODIS, VIIRS, Landsat and Sentinel-2 data. Journal of Hydrology. 605, 127318, doi:10.1016/j.jhydrol.2021.127318</p> <p> <i>We strongly recommend users to use the TERN CMRSET AET V2.2</i>. Details of the TERN CMRSET AET V2.2 data product generation are provided in McVicar, T.R., Vleeshouwer, J., Van Niel, T.G., Guerschman, J.P., Peña-Arancibia, J.L. and Stenson, M.P. (2022) Generating a multi-decade gap-free high-resolution monthly actual evapotranspiration dataset for Australia using Landsat, MODIS and VIIRS data in the Google Earth Engine platform: Development and use cases. Journal of Hydrology (In Preparation).
-
<p>This dataset shows the crops grown in Queensland's main cropping areas, for the winter and summer growing-seasons, from 1988 to the current year. The winter growing-season is defined as June to October, and the summer growing-season is November to May. The basis of the maps is imagery from the (when available) Landsat-5 TM, Landsat-7 ETM+, Landsat-(8,9) OLI, and Sentinel-2(A,B) satellites; MODIS MOD13Q1 imagery was used as a backup in the case of large, temporal data gaps. Clusters of temporally similar pixels, termed 'segments', were identified in the imagery for each growing season, and served as an approximation of field boundaries. Per-segment phenological information, derived from the satellite imagery, was then combined with a tiered, tree-based statistical classifier, using >10000 field observations as training data, and >4000 independent observations for validation. The dataset supersedes a former crop-mapping effort <a href ="https://doi.org/10.3390/rs8040312">(Schmidt et al., 2016)</a>.</p> <p>Each season has 2 maps: an end-of-season prediction and a mid-season prediction. The mid-season prediction is labelled "_vInterim" to indicate that it is based on a relatively short time series, and should be used with caution.</p> <p>For optimum display symbology files have been provided for both QGIS and ArcGIS.</p>