From 1 - 10 / 36
  • Categories    

    This dataset contains global dryland literature abstracts from over the last 75 years (8218 articles) to identify areas in arid ecology that are well studied and topics that are emerging.

  • Categories    

    This dataset contains UAS RGB and multispectral raw images and orthomosaics of Calperum plot SASMDD0013. The drone platform used was DJI Matrice 300 (M300) RTK. Two sensors were flown simultaneously: Zenmuse P1 (35 mm) RGB mapping camera and MicaSense RedEdge-MX Dual (10-band multispectral sensor). The RGB images were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 base station. In the processing workflow, the multispectral image positions (captured with navigation-grade accuracy) were interpolated using image timestamp and RGB image coordinates. Dense point clouds and the fine-resolution RGB smoothed surface were used to generate both the RGB (1 cm/pixel) and multispectral (5 cm/pixel) orthomosaics. rio-cogeo plugin was used to generate Cloud Optimised GeoTIFFs. Details of the data collection settings and processing workflow are described in further sections. Note on multispectral data: in the raw data image file suffixes correspond to bands - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge, 6: Coastal Blue, 7: Green 531, 8: Red 650, 9: RedEdge 705, 10: RedEdge 740. In the orthomosaic, the bands (1-10) are ordered by the Central Wavelength (Coastal Blue, Blue, Green 531, Green, Red 650, Red, RedEdge 705, RedEdge, RedEdge 740, NIR).

  • Categories    

    This dataset contains UAV multispectral imagery collected as part of a field trial to test the Uncrewed Aerial System to be used for the TERN Drone project. The UAS platform is DJI Matrice 300 RTK with 2 sensors: Zenmuse P1 (35 mm) RGB mapping camera and Micasense RedEdge-MX Dual (10-band multispectral sensor). P1 imagery were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 Mobile Station. P1 Camera positions were post-processed using <a href="https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos">AUSPOS</a>. Flight conducted between 10:26 am and 10:47 am AEDT at flying height 80 m, forward and side overlaps for Zenmuse P1 set to 80%. MicaSense RedEdge-MX Dual triggered using timer mode (every second). <br><br> Micasense multispectral sensor positions were interpolated using P1, following which a standard workflow was followed in Agisoft Metashape to generate this orthomosaic (resolution 5 cm). Reflectance calibration was performed using captures of the MicaSense Calibration Panel taken before the flight. The orthomosaic raster has the relative reflectance (no unit) for the 10 bands (Coastal Blue, Blue, Green 531, Green, Red 650, Red, RedEdge 705, RedEdge, RedEdge 740, NIR). The cloud optimised (COG) GeoTIFF was created using rio command line interface. The coordinate reference system of the COG is EPSG 7855 - GDA2020 MGA Zone 55. <br><br> In the raw data RedEdge-MX image file suffixes correspond to bands like so - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge, 6: Coastal Blue, 7: Green 531, 8: Red 650, 9: RedEdge 705, 10: RedEdge 740. However, in the processed Orthomoasic GeoTIFF, the bands 1-10 are ordered as per the Central Wavelength (Coastal Blue, Blue, Green 531, Green, Red 650, Red, RedEdge 705, RedEdge, RedEdge 740, NIR).

  • Categories    

    This dataset contains UAS RGB and multispectral raw images and orthomosaics of Calperum plots SASMDD0010 and SASMDD0018. The drone platform used was DJI Matrice 300 (M300) RTK. Two sensors were flown simultaneously: Zenmuse P1 (35 mm) RGB mapping camera and MicaSense RedEdge-MX Dual (10-band multispectral sensor). The RGB images were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 base station. In the processing workflow, the multispectral image positions (captured with navigation-grade accuracy) were interpolated using image timestamp and RGB image coordinates. Dense point clouds and the fine-resolution RGB smoothed surface were used to generate both the RGB (1 cm/pixel) and multispectral (5 cm/pixel) orthomosaics. rio-cogeo plugin was used to generate Cloud Optimised GeoTIFFs. Details of the data collection settings and processing workflow are described in further sections. Note on multispectral data: in the raw data image file suffixes correspond to bands - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge, 6: Coastal Blue, 7: Green 531, 8: Red 650, 9: RedEdge 705, 10: RedEdge 740. In the orthomosaic, the bands (1-10) are ordered by the Central Wavelength (Coastal Blue, Blue, Green 531, Green, Red 650, Red, RedEdge 705, RedEdge, RedEdge 740, NIR).

  • Categories    

    This dataset contains UAS RGB and multispectral raw images and orthomosaics of Calperum plot SASMDD0012. The drone platform used was DJI Matrice 300 (M300) RTK. Two sensors were flown simultaneously: Zenmuse P1 (35 mm) RGB mapping camera and MicaSense RedEdge-MX Dual (10-band multispectral sensor). The RGB images were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 base station. In the processing workflow, the multispectral image positions (captured with navigation-grade accuracy) were interpolated using image timestamp and RGB image coordinates. Dense point clouds and the fine-resolution RGB smoothed surface were used to generate both the RGB (1 cm/pixel) and multispectral (5 cm/pixel) orthomosaics. rio-cogeo plugin was used to generate Cloud Optimised GeoTIFFs. Details of the data collection settings and processing workflow are described in further sections. Note on multispectral data: in the raw data image file suffixes correspond to bands - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge, 6: Coastal Blue, 7: Green 531, 8: Red 650, 9: RedEdge 705, 10: RedEdge 740. In the orthomosaic, the bands (1-10) are ordered by the Central Wavelength (Coastal Blue, Blue, Green 531, Green, Red 650, Red, RedEdge 705, RedEdge, RedEdge 740, NIR).

  • Categories  

    This dataset contains UAS RGB and multispectral raw images and orthomosaics of Calperum plot SASRIV0002. The drone platform used was DJI Matrice 300 (M300) RTK. Two sensors were flown simultaneously: Zenmuse P1 (35 mm) RGB mapping camera and MicaSense RedEdge-MX (5-band multispectral sensor). The RGB images were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 base station. In the processing workflow, the multispectral image positions (captured with navigation-grade accuracy) were interpolated using image timestamp and RGB image coordinates. Dense point clouds and the fine-resolution RGB smoothed surface were used to generate both the RGB (1 cm/pixel) and multispectral (5 cm/pixel) orthomosaics. rio-cogeo plugin was used to generate Cloud Optimised GeoTIFFs. Details of the data collection settings and processing workflow are described in further sections. Note on multispectral data: in the raw data image file suffixes correspond to bands - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge. In the orthomosaic, the bands (1-5) are ordered by the Central Wavelength (Blue, Green, Red, RedEdge, NIR).

  • Categories    

    This dataset contains UAS RGB and multispectral raw images and orthomosaics of Calperum plot SASMDD0011. The drone platform used was DJI Matrice 300 (M300) RTK. Two sensors were flown simultaneously: Zenmuse P1 (35 mm) RGB mapping camera and MicaSense RedEdge-MX Dual (10-band multispectral sensor). The RGB images were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 base station. In the processing workflow, the multispectral image positions (captured with navigation-grade accuracy) were interpolated using image timestamp and RGB image coordinates. Dense point clouds and the fine-resolution RGB smoothed surface were used to generate both the RGB (1 cm/pixel) and multispectral (6 cm/pixel) orthomosaics. rio-cogeo plugin was used to generate Cloud Optimised GeoTIFFs. Details of the data collection settings and processing workflow are described in further sections. Note on multispectral data: in the raw data image file suffixes correspond to bands - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge, 6: Coastal Blue, 7: Green 531, 8: Red 650, 9: RedEdge 705, 10: RedEdge 740. In the orthomosaic, the bands (1-10) are ordered by the Central Wavelength (Coastal Blue, Blue, Green 531, Green, Red 650, Red, RedEdge 705, RedEdge, RedEdge 740, NIR).

  • Categories  

    This dataset contains UAS RGB and multispectral raw images and orthomosaics of Calperum plots SASMDD0005 and SASMDD0006. The drone platform used was DJI Matrice 300 (M300) RTK. Two sensors were flown simultaneously: Zenmuse P1 (35 mm) RGB mapping camera and MicaSense RedEdge-MX Dual (10-band multispectral sensor). The RGB images were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 base station. In the processing workflow, the multispectral image positions (captured with navigation-grade accuracy) were interpolated using image timestamp and RGB image coordinates. Dense point clouds and the fine-resolution RGB smoothed surface were used to generate both the RGB (1 cm/pixel) and multispectral (5 cm/pixel) orthomosaics. rio-cogeo plugin was used to generate Cloud Optimised GeoTIFFs. Details of the data collection settings and processing workflow are described in further sections. Note on multispectral data: in the raw data image file suffixes correspond to bands - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge, 6: Coastal Blue, 7: Green 531, 8: Red 650, 9: RedEdge 705, 10: RedEdge 740. In the orthomosaic, the bands (1-10) are ordered by the Central Wavelength (Coastal Blue, Blue, Green 531, Green, Red 650, Red, RedEdge 705, RedEdge, RedEdge 740, NIR).

  • Categories    

    This dataset contains UAS RGB and multispectral raw images and orthomosaics of Calperum plot SASMDD0014. The drone platform used was DJI Matrice 300 (M300) RTK. Two sensors were flown simultaneously: Zenmuse P1 (35 mm) RGB mapping camera and MicaSense RedEdge-MX (5-band multispectral sensor). The RGB images were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 base station. In the processing workflow, the multispectral image positions (captured with navigation-grade accuracy) were interpolated using image timestamp and RGB image coordinates. Dense point clouds and the fine-resolution RGB smoothed surface were used to generate both the RGB (1 cm/pixel) and multispectral (5 cm/pixel) orthomosaics. rio-cogeo plugin was used to generate Cloud Optimised GeoTIFFs. Details of the data collection settings and processing workflow are described in further sections. Note on multispectral data: in the raw data image file suffixes correspond to bands - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge. In the orthomosaic, the bands (1-5) are ordered by the Central Wavelength (Blue, Green, Red, RedEdge, NIR).

  • Categories    

    This dataset contains UAS RGB and multispectral raw images and orthomosaics of Calperum plots SASMDD0016 and SASMDD0017. The drone platform used was DJI Matrice 300 (M300) RTK. Two sensors were flown simultaneously: Zenmuse P1 (35 mm) RGB mapping camera and MicaSense RedEdge-MX Dual (10-band multispectral sensor). The RGB images were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 base station. In the processing workflow, the multispectral image positions (captured with navigation-grade accuracy) were interpolated using image timestamp and RGB image coordinates. Dense point clouds and the fine-resolution RGB smoothed surface were used to generate both the RGB (1 cm/pixel) and multispectral (5 cm/pixel) orthomosaics. rio-cogeo plugin was used to generate Cloud Optimised GeoTIFFs. Details of the data collection settings and processing workflow are described in further sections. Note on multispectral data: in the raw data image file suffixes correspond to bands - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge, 6: Coastal Blue, 7: Green 531, 8: Red 650, 9: RedEdge 705, 10: RedEdge 740. In the orthomosaic, the bands (1-10) are ordered by the Central Wavelength (Coastal Blue, Blue, Green 531, Green, Red 650, Red, RedEdge 705, RedEdge, RedEdge 740, NIR).