EVAPOTRANSPIRATION
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
-
Evaporation, Transpiration, and Evapotranspiration Products for Australia based on the Maximum Entropy Production model (MEP). This record is an introduction of a method into the MEP algorithm of estimating the required model parameters over the entire continent of Australia through the use of pedotransfer function, soil properties and remotely sensed soil moisture data. The algorithm calculates the evaporation and transpiration over Australia on daily timescales at the 0.05 degree (5 km) resolution for 2003 – 2013. The MEP evapotranspiration (ET) estimates were validated using observed ET data from 20 Eddy Covariance (EC) flux towers across 8 land cover types in Australia and compared the MEP-ET at the EC flux towers with two other ET products over Australia; MOD16 and AWRA-L products. The MEP model outperformed the MOD16 and AWRA-L across the 20 EC flux sites, with average root mean square errors (RMSE), 8.21, 9.87 and 9.22 mm/8 days respectively. The average mean absolute error (MAE) for the MEP, MOD16 and AWRA-L were 6.21, 7.29 and 6.52 mm/8 days, the average correlations were 0.64, 0.57 and 0.61, respectively. The percentage bias of the MEP ET was within 20% of the observed ET at 12 of the 20 EC flux sites while the MOD16 and AWRA-L ET were within 20% of the observed ET at 4 and 10 sites respectively. The analysis showed that evaporation and transpiration contribute 38% and 62%, respectively, to the total ET across the study period which includes a significant part of the “millennium drought” period (2003 – 2009) in Australia. File naming conventions: E – Evaporation T – Transpiration ET – Evapotranspiration For the 8 day ET, Daily T and ET, the suffix nnn indicates day of year, for example: 001 for January 1, 145 for May 25 (leap year) or 26, etc. While for the daily E, the suffix is in the format mmdd (month,day) for example 0101 for January 1, 0525 for May 25.
-
<p>Quantifying the impact of climate change on actual and potential evapotranspiration (AET and PET) is essential for water security, agriculture production and environmental management. AET and PET are strongly influenced by local factors such as topography, land cover and soil moisture, which limits the usability of global climate models for their projections. Here, we dynamically downscale Coupled Model Intercomparison Project Phase 6 (CMIP6) models using Conformal Cubic Atmospheric Model (CCAM) to a 10km resolution over Australia and derive AET and PET at a daily time step using the Morton method and project future changes under SSP126, 245 and 370. Three AET / PET datasets are provided by Queensland Government Climate Projection Service team, which include Areal AET, Wet Environment Areal PET and Point PET. These datasets are computed offline based on Morton’s Complementary Relationship Areal Evapotranspiration (CRAE) model.</p> <p>In addition, we also provide datasets for Pan Evaporation (linear regression model), Short and Tall Crop Reference Evapotranspiration (Penman–Monteith model) and Shallow Lake Evaporation (Morton’s Complementary Relationship Wet-surface Evaporation CRWE model). They have used dynamically downscaled CMIP6 models datasets as input.</p>
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br /> The flux station is located within an area of dryland agriculture. The surrounding area is dominated by broadacre farming practices. The vegetation cover is predominantly pasture. Elevation of the site is close to 330 m. Climate information comes from the nearby Pingelly BoM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445 mm with highest rainfall in June and July of 81 mm each month. Maximumum and minuimum annual rainfall is 775 and 217 mm, respectively. Maximum temperatures range from 31.9 °C (in Jan) to 15.4 °C (in July), while minimum temperatures range from 5.5 °C (in July) to 16.0 °C (in Feb).<br /><br />
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br> The Otway flux station was located at Narrinda South in south west Victoria, Australia.The pasture was grazed by dairy cattle with average grass height of 0.1 m. Annual average rainfall at the site was around 800 mm and was only moderately seasonal. Mean daily temperature ranged from 25 °C in February to 12 °C in July. The flux station was situated on a 10 m tower. Fluxes of heat, water vapour and carbon dioxide were measured using the open-path eddy covariance technique. Supplementary measurements included temperature, humidity, rainfall, total solar, photosynthetically active radiation (PAR) and net radiation. Soil temperature and heat flux were also measured. The Otway flux station was established in February 2007 on private land at Nirranda South and managed by CSIRO Marine and Atmospheric Research staff as part of the Cooperative Research Centre for Greenhouse Gas Technologies.<br /> <br><br>
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.21) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The site is located on a low lying plain dominated by Mitchell Grass (<em>Astrebla</em> spp.). Elevation of the site is close to 250 m and mean annual precipitation at a nearby Bureau of Meteorology site is 640 mm. Maximum temperatures range from 28.4 °C (in June/ July) to 39.1 °C (in December), while minimum temperatures range from 11.2 °C (in July) to 24.4 °C (in December).</br> <br>The instrument mast is 5 m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall and net radiation are measured. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.</br> <br>Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, nitrogen and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out at the site in September 2008. Biomass harvest measured: mean live biomass 0.00 gm<sup>-2</sup> (standard error: 0.00), mean standing dead biomass 163.42 gm<sup>-2</sup> (standard error: 16.73), mean litter biomass 148.99 gm<sup>-2</sup> (standard error: 21.32), total mean biomass 312.40 gm<sup>-2</sup> (standard error: 30.80). Soil consists of: clay 14.47%, silt 51.23%, sand 34.30%.</br>
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The Aqueduct Snow Gum Flux station is part of the Australian Mountain Research Facility (AMRF), located at an elevation of 1616 meters asl, Kosciuszko National Park, NSW. The site is characterised by subalpine woodland vegetation dominated by <i>Eucalyptus pauciflora</i>. Long term climate of the site recorded by the Bureau of Meteorology, Perisher Valley AWS (station no. 071075) shows an annual mean of 11.1° C, with annual mean maximum of 12.2° C and annual mean minimum of 9.7° C</br>
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Alice Springs Mulga flux station is located on Pine Hill cattle station, near Alice Springs in the Northern Territory. The woodland is characterized by the <i>Acacia aneura</i> canopy, which is 6.5 m tall on average. Elevation of the site is 606 m above sea level, and the terrain is flat. Mean annual precipitation at the nearby (45 km distant) Bureau of Meteorology station is 305.9 mm but ranges between 100 mm in 2009 to 750 mm in 2010. Predominant wind directions are from the southeast and east. The extent of the woodland is 11 km to the east of the flux station and 16 km to the south. The soil is red sandy clay (50:50 sand:clay) overlying a 49 m deep water table. Pine Hill Station is a functioning cattle station that has been in operation for longer than 50 years. The instrument mast is 13.7 m tall. Fluxes of heat, water vapour and carbon are measured using the open-path eddy covariance technique at 11.6 m. Supplementary measurements above the canopy include temperature and humidity (11.6 m), windspeed and wind direction (9.25 m), downwelling and upwelling shortwave and longwave radiation (12.2 m). Precipitation is monitored in a canopy gap (2.5 m). Supplementary measurements within and below the canopy include barometric pressure (1 m), wind speed (2 m, 4.25 m and 6.5 m), and temperature and humidity (2 m, 4.25 m and 6 m). Below ground soil measurements are made in bare soil, mulga, and understory habitats and include ground heat flux (0.08 m), soil temperature (0.02 m – 0.06 m) and soil moisture (0 – 0.1 m, 0.1 – 0.3 m, 0.6 – 0.8 m and 1.0 – 1.2 m). Ancillary measurements include soil water and carbon fluxes, leaf water potential, leaf gas exchange, stem basal area, stem growth, litter production, leaf area index, stem hydraulic conductance, and carbon and water stable isotope ratios. <br />
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Robson Creek site is part of the Far North Queensland (FNQ) Rainforest Site along with affiliated monitoring sites at Cape Tribulation (Daintree Rainforest Observatory) and Cow Bay (Daintree Discovery Centre). The flux station is located at the foothills of the Lamb Range, part of the Wet Tropics World Heritage Area, and north-west of a 25 ha census plot established by CSIRO in 2012.</br> <br>The forest is classified as Regional Ecosystem (RE) 7.3.36a, complex mesophyll vine forest (Queensland Government, 2006). There are 211 species in the adjacent 25 ha plot, and average tree height is 28 m, ranging from 23 to 44 m. Elevation of the site is 711 m and mean annual precipitation is 2000 mm. The upland rainforests of the Atherton Tablelands are some of the most biodiverse and carbon dense forests in Australia. The landform of the 25 ha plot which is in the dominant wind direction from the station is moderately inclined with a low relief, a 30 m high ridge running north/south through the middle of the plot and a 40 m high ridge running north/south on the eastern edge of the plot.</br> <br>The instruments are mounted on a free standing station at 40 m. Fluxes of heat, water vapour and carbon dioxide are measured using the open-path eddy flux technique. Supplementary measurements above the canopy include temperature, humidity, windspeed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation.</br> <br>Note: Level 3 data for 2015 - 2018 were updated in 2018 correcting a rainfall issue in 2015 and a wind direction issue 2016 - 2018. A data gap from 2019-02-14 to 2019-02-21 was due to a major power supply failure.</br>
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>This is a topographically flat area, primarily comprised of the following soil types: sandy loams, scattered clays, red brown earths, transitional red brown earth, sands over clay and deep sands. Stream valleys and layered soil and sedimentary materials are found across the landscape.</br> <br>The flux station tower extends to 20 m, however flux measurements are recorded from slightly lower than this. Mean annual precipitation from the nearby Bureau of Meteorology is 465 mm. Maximum temperatures ranged from 16.6 °C (in July) to 37.4 °C (in January), while minimum temperatures ranged from 11.8 °C (in July) to 29.0 °C (in January). Maximum temperatures varied on a seasonal basis by approximately 20.8 °C and minimum temperatures by 17.2 °C.</br> <br>The site is within a wider research area (60 x 60 km) that supports a network of flux stations, which have been in operation since late 2001.</br>
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.15) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The Yarramundi Irrigated site is an improved, managed pasture on the Western Sydney University Hawkesbury campus. Original woodland vegetation was cleared prior to 1950. A mixture of native and exotic grasses and forbs dominate the site, which is used by cattle in an intensively managed grazing operation. The flux tower was established in October of 2019 and is managed by the Hawkesbury Institute for the Environment, with partial support from TERN and WSU Office of Estate and Commercial (Farm Production Unit).</br> <br>The climate is warm-temperate, with annual rainfall averaging 728 mm, mean maximum temperature in January of 30.4°C and mean minimum temperature in July of 3.6°C (BOM station 067105). The elevation of the site is about 20 m asl and the topography is flat. The soil is sandy loam in texture, organic carbon content is <1%.</br>
TERN Geospatial Catalogue