NetCDF
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
In 1963, the Glen Canyon Dam, in Hite Utah was completed, creating the Lake Powell reservoir along the Colorado River. The water levels of Lake Powell peaked in 1983 and have declined since, releasing over-pressure on the underlying sediment. This release in over-pressure created mud volcanoes, structures along the shoreline made of cavities that allow fluid and gases to rise to the surface and escape. Green house gases including methane are released from these structures, and to better understand how development of natural wetlands can result in unintended increased levels of greenhouse gas emissions, we asked 1) how much of each gas is generated or and whether the amount of each gas is changing through time and 2) how are these gases forming in the subsurface? We first measured the amounts of carbon dioxide (CO2), methane (CH4), and air (N) in volcano gas samples collected in 2014, 2015, and 2016. We found that from 2014 through 2016, methane levels from these volcanoes fluctuated significantly. In 2016, we looked at the amounts of carbon and hydrogen isotopes in the methane, which told us the gas is generated from microorganisms feeding on organic matter and is released during water-level fluctuations. We looked at mud volcanoes only located along the Lake Powell marina delta in Hite, Utah. The data spans geological structures restricted to one marina delta.
-
Evaluation of the morphological variation within the genus <em>Polyosma</em> (<em>Escalloniaceae</em>) of Australia, New Caledonia and Papuasia based on herbarium specimens to clarify the taxonomy of the recognized species in this genus. These data also identified several previously unpublished species that are new to science.
-
The record contains information on the moth assemblages at canopy and ground level at five sites within a 25 ha plot, at Robson Creek Site, Far North Queensland. Data on moth taxonomic information and the number of individuals sampled from the ground and canopy are provided for the sampling years, 2009, 2010 and 2011.
-
High quality passive infrared wildlife cameras were used to acquire information on faunal biodiversity at the site. Two camera traps were deployed within the one hectare core plot between 11/04/2017 and 06/05/2017. The first camera (Reconyx UltraFire WR6) was attached to a tree at one metre high and the second camera (Reconyx Hyperfire HC600) was attached to a tree at 0.3 metres high. The cameras were first deployed for two weeks, then data were downloaded before redeploying the cameras at two other sites within the one hectare plot for a further one week period.<br /> Individuals from 10 species were observed during the study time frame.<br /><br /> The Samford Peri-Urban SuperSite was established in 2010 in remnant fringe eucalypt forest, near urban development in the Samford Valley. The upper storey is dominated by <em>Corymbia intermedia</em>, <em>Eucalyptus siderophloia</em> and <em>Lophostemon suaveolens</em>. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/samford-peri-urban-supersite/ . <br /><br /> Other images collected at the site include digital cover photography, phenocam time-lapse images taken from fixed overstorey cameras, panoramic landscape and photopoints. <br /><br /> <iframe allow="autoplay; encrypted-media" allowfullscreen="" frameborder="0" src="https://www.youtube.com/embed/1OIGPufjPK8" title="Camera trap trial (Hyperfire) at Samford 2017" style="height:248px;width:462px;"></iframe> <br />Camera trap trial (Hyperfire) at Samford 2017
-
Mating system and fitness data for families of <em>Eucalyptus socialis</em> grown in common garden experiments. Families collected across a fragmentation gradient. Open-pollinated progeny arrays were collected and reared in the common garden experiments. These open-pollinated progeny arrays were also genotyped at microsatellite loci to generate the mating system data. Data showed association between fragmentation on mating system, which in turn impacted fitness. Please contact owner prior to use.
-
The dataset consists of results from two stream mesocosm experiments that were conducted in the summer-autumn of 1996 and 1997 to distinguish the influence of fine sediment loads and nutrient concentrations on benthic macro-invertebrate and algal communities. 11 biological variables were extracted from the results of this experiment and were standardized for the purpose of training neural networks that could be used to diagnose nutrient and fine sediment impacts in field surveys. The 11 variables were selected according to how well they correlated with the experimental treatment levels (high and low values of both nutrients and fine sediments). The 11 variables were: chlorophyll a (mg/m2), macro-invertebrate familial richness, total abundance, and the abundance of <em>Oligochaeta, Leptoperla varia (Gripopterygidae), Nousia spp. (Leptophlebiidae), Austrophlebioides spp. (Leptophlebiidae), Orthocladiinae, Tanypodinae, Tipulidae</em> and larval <em>Scirtidae</em>. These taxa were abundant within and among the stream mesocosm communities and are common in a wide range of Tasmanian rivers. Values for each of 11 biological response variables were standardized by dividing by their average value observed in the experimental controls mesocosm samples from that year. See Magierowski RH, Read SM, Carter SJB, Warfe DM, Cook LS, Lefroy EC, et al. (2015) <i>Inferring Landscape-Scale Land-Use Impacts on Rivers Using Data from Mesocosm Experiments and Artificial Neural Networks.</i> PLoS ONE 10(3): e0120901. https://doi.org/10.1371/journal.pone.0120901 https://doi.org/10.1371/journal.pone.0120901. This data was collected for the purpose of training artificial neural networks that could diagnose nutrient and sediment impacts in Tasmanian rivers. Each of the 11 variables were standardized by their average value observed in the experimental control samples from that year and some experimental treatment effects (Light) were ignored to simplify the neural network training process. Therefore, these data should not be used to make conclusions about the impacts of fine sediments and nutrients in Tasmanian rivers.
-
Invertebrates dominate the animal world in terms of abundance, diversity and biomass and play critical roles in maintaining ecosystem function. Despite their obvious importance, disproportionate research attention remains focused on vertebrates, with knowledge and understanding of invertebrate ecology still lacking. Due to their inherent advantages, usage of camera traps in ecology has risen dramatically over the last three decades, especially for research on mammals. However, few studies have used cameras to reliably detect fauna such as invertebrates or used cameras to examine specific aspects of invertebrate ecology. Twenty-four Reconyx PC800 HyperfireTM cameras were deployed on 7th July 2016 at Main Camp and left until 12th October 2016 (98 days, or 2352 h of deployment) in the Simpson Desert, south-western Queensland, capturing 372 time-lapse images of Wolf spiders (Family Lycosidae). Images were tagged with camera location, position, angle, camera ID and presence of lycosids. Additionally, spotlight surveys were conducted in October 2016 every hour between dusk (19:30 h) and dawn (05:30 h) over three nights with a total of 352 lycosids observed. This data set was used to determine whether: 1) camera traps provide a viable method for detecting wolf spiders, 2) diel activity patterns of the spiders can be ascertained, and 3) patterns in spider activity vary with environmental conditions, specifically between burned and unburned habitats and the crests and bases of sand dunes. This data presents a useful example of the utility of cameras as a tool for determining the diel activity patterns and habitat use of larger arthropods such as wolf spiders. Please note: Camera trap images are not provided and only species occurrence records are included. Also, image files were renamed after collection, resulting in a number versus time conflict. However, dates and times of sightings provided are correct.
-
Schools Weather and Air Quality (SWAQ) is a citizen science project funded by the Department of Industry, Innovation and Science as part of its Inspiring Australia - Citizen Engagement Program. SWAQ is equipping public schools across Sydney with research-grade meteorology and air quality sensors, enabling students to collect and analyse research quality data through curriculum-aligned classroom activities. The network includes twelve automatic weather stations and seven automatic air quality stations, stretched from -33.5995° to -34.0421° latitude and from 150.6913° to 151.2708° longitude. The average spacing is 10.2 km and the average installation height is 2.5 m above ground level. Optimum site allocation was determined by undertaking a multi-criteria weighted overlay analysis to ensure data representativeness and quality. Six meteorological parameters (dry-bulb temperature, relative humidity, barometric pressure, rain, wind speed, and wind direction) and six air pollutants (SO2, NO2, CO, O3, PM2.5, and PM10) are recorded. Observations and metadata are available from September 2019 for WXT536 + AQT420 stations and from October 2019 for WXT536 stations (refer to Table 1 of the Dataset Guide), thus encompassing the Black Summer bushfire and the COVID-19 lockdown period. Data routinely undergo quality control, quality assurance and publication.
-
TERN (funded by NCRIS and EIF) has been developing coherent community-wide management structures for several of the required key data streams, so the relevant data are no longer unmanaged. eMAST builds on this infrastructure, by generating products that integrate the different streams of data e.g. water use and other ecosystem functions. The eMAST ANUClimate climate surfaces will be the first, continental 0.01 degree (nominal 1km) resolution climate surfaces generated using the Hutchinson et al. (ANU) methodology. Combined with the ancillary bioclimatic, ecosystem variables and indices derived from these data, this will be the first complete collection of its kind made publically available as a single resource. This collection of datasets, is a resource for the ecosystem science community and enhances the capacity for research. For example the development of an advanced benchmarking system for terrestrial ecosystem models (i.e. PALS). In addition, the data will be made accessible through the SPEDDEXES web-interface at the NCI, making the data sets conveniently available to a wide audience/community. The datasets generated within the scope of eMAST focus on Australia ecosystems, but are expected to encourage global as well as national interests, because of the universal data formats use. The project is thus expected to facilitate ecosystem modellers to perform comparative analyses of model performance; build new connections between Australian and overseas researchers, and between different research communities in Australia; and accelerate the development, testing and optimization of terrestrial ecosystem models. Working towards the next generation of robust, process based ecosystem models; we are synthesizing observations of plant biophysical and physiological traits, developing gridded surfaces of these traits, and working with TERN MultiScale Plot Network to improve national coverage of trait measurements. Working in collaboration with international collaborators from NEON and NCAR; eMAST are demonstrating and developing Australia capacity for making models utilise these information rich collections. More information about this collection can be found at http://www.emast.org.au
-
<p> The dataset aims at studying associations between mating system parameters and fitness in natural populations of trees. Fifty-eight open-pollinated progeny arrays were collected from trees in three populations. Progeny were planted in a reciprocal transplant trial. Fitness was measured by family establishment rates. We genotyped all trees and their progeny at eight microsatellite loci. Planting site had a strong effect on fitness, but seed provenance and seed provenance × planting site did not. Populations had comparable mating system parameters and were generally outcrossed, experienced low biparental inbreeding and high levels of multiple paternity. As predicted, seed families that had more multiple paternities also had higher fitness, and no fitness-inbreeding correlations were detected. Demonstrating that fitness was most affected by multiple paternities rather than inbreeding, we provide evidence supporting the constrained inbreeding hypothesis; i.e. that multiple paternity may impact on fitness over and above that of inbreeding, particularly for preferentially outcrossing trees at life stages beyond seed development. This dataset could potentially be reused for meta-analysis or review of effects of habitat fragmentation on plants (e.g. pollination, mating system, genetic diversity etc). Please contact owner prior to re-use. </p> <p>This is part of the authors' PhD at the University of Adelaide, supervised by Prof Andrew Lowe, Dr Mike Gardner and Dr Kym Ottewell. Main goals of the project were 1. Examine and quantify the impact of fragmentation and tree density on mating patterns, and how this may vary with pollinators of differing mobility 2. Determine the theoretical expectations and perform empirical tests of mating pattern-fitness relationships in trees 3. Explore the plant genetic resource management implications that arise from the observations in aims 1 and 2 </p>
TERN Geospatial Catalogue