PRECIPITATION AMOUNT
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
-
The Australian cosmic-ray soil moisture monitoring network was first established in 2010 to provide Australian and global researchers with spatially distributed intermediate scale soil moisture observations. A cosmic-ray sensor (CRS) provides continuous estimates of soil moisture over an area of approximately 30 hectares by measuring naturally generated fast neutrons (energy 10–1000 eV) that are produced by cosmic rays passing through the Earth’s atmosphere. The neutron intensity above the land surface is inversely correlated with soil moisture as it responds to the hydrogen contained in the soil and to a lesser degree to plant and soil carbon compounds. The cosmic-ray technique is also passive, non-contact, and is largely insensitive to bulk density, surface roughness, the physical state of water, and soil texture. The scale of CRS measurements fills the void between point scale sensor measurements and large scale satellite observations. The depth of measurements varies with the moisture content of the soil but is typically between 10-30 cm. The depth of observations is reported as ‘effective depth’. <br> The CosmOz network is expanding as new sensors are added over time. The initial network was funded by CSIRO Land and Water but more recently TERN has funded work to maintain the network add new sensors and deliver data more efficiently. The standard CRS installation includes; a cosmic-ray neutron tube, a rain gauge (2m high), temperature and humidity sensors, and an atmospheric pressure sensor. Measures of all parameters are reported at an hourly interval. Each CRS requires an in-field calibration across the footprint of measurements to convert neutron counts to soil moisture content. The calibration includes collection of soil samples for bulk density, lattice water content and soil organic carbon.<br> The Australia CosmOz network consists of <a href="https://cosmoz.csiro.au/sites">19 stations</a>. The extent of the network and available data can be seen at the CosmOz network web page: <a href="https://cosmoz.csiro.au/">https://cosmoz.csiro.au</a>. The data is also accessible from the <a href="https://landscapes-cosmoz-api.tern.org.au/rest/doc">TERN Cosmoz REST API</a>.<br> The calibration and correction procedures used by the network are described by <a href="https://doi.org/10.1002/2013WR015138">Hawdon et al. 2014 </a>.
-
This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br />The flux station site is located within an area of dryland agriculture. The surrounding area is dominated by broadacre farming practices. The vegetation cover is predominantly pasture. Elevation of the site is close to 152m and mean annual precipitation at a nearby Bureau of Meteorology site measures 650mm. Maximum temperatures range from 12.3°C (in July) to 29.7°C (in February), while minimum temperatures range from 10.4°C (in July) to 26.8°C (in February).<br /><br />The instrument mast is 4 meters tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall and net radiation are measured. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.<br /><br />
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.21) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The flux station is located at Rosebank Station, approximately 11 km south-east of Longreach in Queensland. The site is arid tussock grassland with a variety of grass species including <em>Astrebla lappacea</em> and <em>Astrebla squarrosa</em> over black vertosol soil that supports sheep and beef cattle grazing. Traditional owners at this site are the Iningai people.
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The site is situated within a wetland that flooded seasonally. The principal vegetation is <em>Oryza rufipogon</em>, <em>Pseudoraphis spinescens</em> and <em>Eleocharis dulcis</em>. The elevation is approximately 4 m, with a neighbouring Bureau of Meteorology station recording 1411 mm mean annual precipitation. Maximum temperatures range from 31.3 °C (in June and July) to 35.6 °C (in October), while minimum temperatures range from 14.9 °C (in July) to 23.9 °C (in December and February). Maximum temperatures vary on a seasonal basis by approximately 4.3 °C and minimum temperatures by 9.0 °C.<br /><br /> The instrument mast is 15 m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry. Ancillary measurements being taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, nitrogen and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne-based remote sensing (Lidar and hyperspectral measurements) was carried out across the site in September 2008.
-
This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /><br /> This is a topographically flat area, primarily comprised of the following soil types: sandy loams, scattered clays, red brown earths, transitional red brown earth, sands over clay and deep sands. Stream valleys and layered soil and sedimentary materials are found across the landscape. <br /><br /> The flux station tower extends to 20m, however flux measurements are recorded from slightly lower than this. Mean annual precipitation from a nearby Bureau of Meteorology site measured 465 mm. Maximum temperatures ranged from 37.4°C (in January) to 16.6°C (in July), while minimum temperatures ranged from 29.0°C (in January) to 11.8°C (in July). Maximum temperatures varied on a seasonal basis by approximately 20.8°C and minimum temperatures by 17.2°C. <br /> The site is within a wider research area (60 x 60 km) that supports a network of flux stations, which have been in operation since late 2001 onwards.<br /><br />
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The site is located on a low lying plain dominated by Mitchell Grass (<em>Astrebla</em> spp.). Elevation of the site is close to 250 m and mean annual precipitation at a nearby Bureau of Meteorology site is 640 mm. Maximum temperatures range from 28.4 °C (in June/ July) to 39.1 °C (in December), while minimum temperatures range from 11.2 °C (in July) to 24.4 °C (in December).</br> <br>The instrument mast is 5 m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall and net radiation are measured. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.</br> <br>Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, nitrogen and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out at the site in September 2008. Biomass harvest measured: mean live biomass 0.00 gm<sup>-2</sup> (standard error: 0.00), mean standing dead biomass 163.42 gm<sup>-2</sup> (standard error: 16.73), mean litter biomass 148.99 gm<sup>-2</sup> (standard error: 21.32), total mean biomass 312.40 gm<sup>-2</sup> (standard error: 30.80). Soil consists of: clay 14.47%, silt 51.23%, sand 34.30%.</br>
-
This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in dry sclerophyll woodland using eddy covariance techniques. <br /><br /> The site was classified as box woodland, dominated by two main Eucalypt species:<em>Eucalyptus microcarpa</em> (Grey Box) and <em>Eucalyptus leucoxylon</em> (Yellow Gum).<br /> Elevation of the site is close to 165 m and mean annual precipitation from a nearby Bureau of Meteorology site measured 558 mm. Maximum temperatures ranged from 29.8°C (in January) to 12.6°C (in July), while minimum temperatures ranged from 14.2°C (in February) to 3.2°C (in July). Maximum temperatures varied on a seasonal basis by approximately 17.2°C and minimum temperatures by 11.0°C.<br /><br />The instrument mast is 36m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation were measured above the canopy. Soil heat fluxes were measured and soil moisture content was gathered using time domain reflectometry. This data is also available at http://data.ozflux.org.au .
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Robson Creek site is part of the Far North Queensland (FNQ) Rainforest Site along with affiliated monitoring sites at Cape Tribulation (Daintree Rainforest Observatory) and Cow Bay (Daintree Discovery Centre). The flux station is located at the foothills of the Lamb Range, part of the Wet Tropics World Heritage Area, and north-west of a 25 ha census plot established by CSIRO in 2012.</br> <br>The forest is classified as Regional Ecosystem (RE) 7.3.36a, complex mesophyll vine forest (Queensland Government, 2006). There are 211 species in the adjacent 25 ha plot, and average tree height is 28 m, ranging from 23 to 44 m. Elevation of the site is 711 m and mean annual precipitation is 2000 mm. The upland rainforests of the Atherton Tablelands are some of the most biodiverse and carbon dense forests in Australia. The landform of the 25 ha plot which is in the dominant wind direction from the station is moderately inclined with a low relief, a 30 m high ridge running north/south through the middle of the plot and a 40 m high ridge running north/south on the eastern edge of the plot.</br> <br>The instruments are mounted on a free standing station at 40 m. Fluxes of heat, water vapour and carbon dioxide are measured using the open-path eddy flux technique. Supplementary measurements above the canopy include temperature, humidity, windspeed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation.</br> <br>Note: Level 3 data for 2015 - 2018 were updated in 2018 correcting a rainfall issue in 2015 and a wind direction issue 2016 - 2018. A data gap from 2019-02-14 to 2019-02-21 was due to a major power supply failure.</br>
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.15) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Silver Plains Flux Station was established in 2019 in Interlaken, on the Tasmanian Central Plateau, on land owned and managed by the Tasmanian Land Conservancy.</br>
-
This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /><br /> The site is woodland savanna with an overstory co-dominated by tree species <em>E. tetrodonta</em>, <em>C. latifolia</em>, <em>Terminalia grandiflora</em>, <em>Sorghum sp.</em> and <em>Heteropogon triticeus</em>. Average canopy height measures 16.4 m. <br />Elevation of the site is close to 110m and mean annual precipitation at a nearby Bureau of Meteorology site is 1170mm. Maximum temperatures range from 37.5°C (in October) to 31.2°C (in June), while minimum temperatures range from 12.6°C (in July) to 23.8°C (in January). Maximum temperatures range seasonally by 6.3°C and minimum temperatures by 11.2°C. <br /><br />The instrument mast is 23 meters tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy.<br />Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008. <br /><br />
TERN Geospatial Catalogue