Keyword

Kilogram per Kilogram

297 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
From 1 - 10 / 297
  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br><em>Eucalyptus obliqua</em> forests dominate the vegetation below 650&nbsp;m where they exist as fire-maintained communities. On fertile soils these forests attain mature heights in excess of 55&nbsp;m: the tallest <em>E. obliqua</em> reaches a height of 90&nbsp;m. The flux station is installed in a stand of tall, mixed-aged <em>E. obliqua</em> forest (77 and >250 years-old) with a rainforest understorey and a dense man-fern (<em>Dicksonia antarctica</em>) ground-layer, on a small flat of elevation 100&nbsp;m adjacent to the Huon River. The understorey vegetation progresses from wet sclerophyll (dominated by <em>Pomaderris apatala</em> and <em>Acacia dealbata</em>) to rainforest (dominated by <em>Nothofagus cunninghamii</em>, <em>Atherosperma moschatum</em>, <em>Eucryphia lucida</em> and <em>Phyllocladus aspleniifolius</em>) with increasing time intervals between fire events. The site supports prodigous quantities of coarse woody debris as is characteristic of these fire-maintained eucalypt forests on fertile sites in southern Tasmania. The soil at the flux site is derived from Permian mudstone and has a gradational profile with a dark brown organic clayey silt topsoil overlying a yellow brown clay. The climate is classified as temperate with a mild summer and no dry season. Mean annual precipitation is 1700&nbsp;mm with a relatively uniform seasonal distribution. Summer temperatures peak in January (8.4&nbsp;°C to 19.2&nbsp;°C) with winter temperatures reaching their lowest in July (2.6&nbsp;°C to 8.4&nbsp;°C).</br> <br>The instruments are mounted at the top of an 80&nbsp;m tall guyed steel lattice tower. Supplementary measurements above the canopy include temperature, humidity, windspeed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation. An open-path gas analyser (EC150) was replaced by a closed-path gas analyser (EC155) at the end of January 2015. Soil moisture content is measured using time domain reflectometry. Soil heat fluxes and temperature are also measured. Micro-meteorology (CO<sub>2</sub>, H<sub>2</sub>O, energy fluxes) and meteorology (temperature, humidity, wind speed and direction, rainfall) were measured from 2013 to late 2016, but the dataset is incomplete due to ongoing problems since changing the open-path IRGA to a closed path system (CPEC200) during 2015. Soil data (moisture, heat flux, temperature) are complete for the time period.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The forest is classed as a tall, wet sclerophyll forest, and the dominant <em>Eucalyptus Regnans</em> or mountain ash trees have an average canopy height of 75&nbsp;m. The site contains a chronosequence of (20, 80 and 300) stand ages that were established during fires occurring over the last 300 years. The area is assigned the IUCN Category II (National Parks) of the United Nations’ list of National Parks and protected areas, which means the park is primarily managed for ecosystem conservation. The catchment area is dominated by mountain ash, the world’s tallest flowering plant (angiosperm). Trees can reach heights of more than 90&nbsp;m in areas with high rainfall and fertile soil. Mountain ash forests are confined to the cool mountain regions with elevations ranging from 460 to 1100&nbsp;m and average rainfalls of 1100 to 2000&nbsp;mm/y. These trees are well distributed throughout Victoria’s Central Highlands including the Otway Ranges and Strzlecki Ranges; they are also found in Tasmania. The catchment area contains a portion of the Mt. Disappointment range, the Divide and the headwaters of Wallaby Creek and Silver Creek, and much of the slopes are characterised as flat to moderate.</br> <br>The station itself is located within an old growth stand with individual trees as old as 300 years. Below the dominant canopy lies a temperate rainforest understorey consisting of <em>Pomaderris aspera</em> and <em>Olearia argophylla</em> species, which are 10 to 18&nbsp;m tall. The lower layers of vegetation are dominated by tree ferns (<em>Cyathea australis</em> and <em>Dicksonia antartica</em>) and extensive tracts of rosette and rhizonic ferns (<em>Polystichum proliferum</em> and <em>Blechnum wattsii</em>) as well as acacia trees. The elevation is approximately 720&nbsp;m. The major soil type within the forest is krasnozemic soils, which are friable red/brown soils, with high amounts of organic matter in the upper 20 to 30&nbsp;cm. However, the composition of krasnozemic soils is not homogenous, but rather varies with altitude. Grey-yellow podsolised soils can be found at lower altitudes, while krasnozemic loams is characteristic of the higher altitudes of the Kinglake and of the Hume Plateau. The clay content of these soils increases with depth until at least 200&nbsp;cm deep, where after a transition soils contain rock fragments. The climate of the study area is classified as a cool, temperate zone, with the highest temperatures occurring during the summer months of December – February (13.8 to 22.5&nbsp;°C), whilst the coolest temperatures are experienced in May and August (4.7 to 9.2&nbsp;°C). Average annual precipitation is 1209&nbsp;mm, with a maximum rainfall occurring in June (Ashton, 2000). The study site experiences foggy conditions after sunset during autumn and winter.</br> <br>The original station had a main mast at 110&nbsp;m. This station was destroyed in February 2009 by bushfires. A replacement station was established in March 2010 and started recording in May 2010. The mast sat at a height of 5&nbsp;m. The post-fire instrumentation was not as diverse as the pre-fire instrumentation.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> Great Western Woodlands (GWW) comprise a 16 million&nbsp;ha mosaic of temperate woodland, shrubland and mallee vegetation in south-west Western Australia. The region has remained relatively intact since European settlement, owing to the variable rainfall and lack of readily accessible groundwater. The woodland component is globally unique in that nowhere else do woodlands occur at as little as 220&nbsp;mm mean annual rainfall. Further, other temperate woodlands around the world have typically become highly fragmented and degraded through agricultural use. Great Western Woodlands Site was established in 2012 in the Credo Conservation Reserve. The site is in semi-arid woodland and was operated as a pastoral lease from 1907 to 2007. The core 1&nbsp;ha plot is characterised by <em>Eucalyptus salmonophloia</em> (salmon gum), with <em>Eucalyptus salubris</em> and <em>Eucalyptus clelandii</em> dominating other research plots. The flux station is located in salmon gum woodland.

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The site is situated within a wetland that flooded seasonally. The principal vegetation is <em>Oryza rufipogon</em>, <em>Pseudoraphis spinescens</em> and <em>Eleocharis dulcis</em>. The elevation is approximately 4&nbsp;m, with a neighbouring Bureau of Meteorology station recording 1411&nbsp;mm mean annual precipitation. Maximum temperatures range from 31.3&nbsp;°C (in June and July) to 35.6&nbsp;°C (in October), while minimum temperatures range from 14.9&nbsp;°C (in July) to 23.9&nbsp;°C (in December and February). Maximum temperatures vary on a seasonal basis by approximately 4.3&nbsp;°C and minimum temperatures by 9.0&nbsp;°C.<br /><br /> The instrument mast is 15&nbsp;m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry. Ancillary measurements being taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, nitrogen and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne-based remote sensing (Lidar and hyperspectral measurements) was carried out across the site in September 2008.

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). <br /> <br /> Located in a 5 km<sup>2</sup> block of relatively uniform open-forest savanna, the site is representative of high rainfall, frequently burnt tropical savanna. <br /><br /> Tropical savanna in Australia occupies 1.9 million km<sup>2</sup> across the north and given the extent of this biome, understanding biogeochemical cycles, impacts of fire on sequestration, vegetation and fauna is a national priority. In the NT, savanna ecosystems are largely intact in terms of tree cover, with only modest levels of land use change. Despite this, there is evidence of a loss of biodiversity, most likely due to shifts in fire regimes and a loss of patchiness in the landscape. Approximately 40 % of the savanna burn every year and understanding fire impacts on fauna and flora is essential for effective land management. <br /><br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.15) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br /> The flux station was established in August 2011 while the site supported tropical savanna. The site was part of a deforestation experiment measuring greenhouse gas exchange during conversion of forest to farmland. The land was being cultivated for watermelon production from 2013.<br /><br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.15) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The site is woodland savanna with an overstory co-dominated by tree species <em>Eucalyptus tetrodonta</em>, <em>Corymbia latifolia</em>, <em>Terminalia grandiflora</em>, <em>Sorghum sp.</em> and <em>Heteropogon triticeus</em>. Average canopy height measures 16.4&nbsp;m. Elevation of the site is close to 110&nbsp; m and mean annual precipitation at a nearby Bureau of Meteorology site is 1,170&nbsp;mm. Maximum temperatures range from 31.2 &nbsp;°C (in June) to 37.5&nbsp;°C (in October), while minimum temperatures range from 12.6&nbsp;°C (in July) to 23.8&nbsp;°C (in January). Maximum temperatures range seasonally by 6.3&nbsp;°C and minimum temperatures by 11.2&nbsp;°C. <br /><br />The instrument mast is 23&nbsp;m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy.<br /><br>Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, nitrogen and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the site in September 2008. <br /><br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The site is located on a low lying plain dominated by Mitchell Grass (<em>Astrebla</em> spp.). Elevation of the site is close to 250&nbsp;m and mean annual precipitation at a nearby Bureau of Meteorology site is 640&nbsp;mm. Maximum temperatures range from 28.4&nbsp;°C (in June/ July) to 39.1&nbsp;°C (in December), while minimum temperatures range from 11.2&nbsp;°C (in July) to 24.4&nbsp;°C (in December).</br> <br>The instrument mast is 5&nbsp;m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall and net radiation are measured. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.</br> <br>Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, nitrogen and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out at the site in September 2008. Biomass harvest measured: mean live biomass 0.00&nbsp;gm<sup>-2</sup> (standard error: 0.00), mean standing dead biomass 163.42&nbsp;gm<sup>-2</sup> (standard error: 16.73), mean litter biomass 148.99&nbsp;gm<sup>-2</sup> (standard error: 21.32), total mean biomass 312.40&nbsp;gm<sup>-2</sup> (standard error: 30.80). Soil consists of: clay 14.47%, silt 51.23%, sand 34.30%.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Alice Springs Mulga flux station is located on Pine Hill cattle station, near Alice Springs in the Northern Territory. The woodland is characterized by the <i>Acacia aneura</i> canopy, which is 6.5&nbsp;m tall on average. Elevation of the site is 606&nbsp;m above sea level, and the terrain is flat. Mean annual precipitation at the nearby (45&nbsp;km distant) Bureau of Meteorology station is 305.9&nbsp;mm but ranges between 100&nbsp;mm in 2009 to 750&nbsp;mm in 2010. Predominant wind directions are from the southeast and east. The extent of the woodland is 11&nbsp;km to the east of the flux station and 16&nbsp;km to the south. The soil is red sandy clay (50:50 sand:clay) overlying a 49&nbsp;m deep water table. Pine Hill Station is a functioning cattle station that has been in operation for longer than 50 years. The instrument mast is 13.7&nbsp;m tall. Fluxes of heat, water vapour and carbon are measured using the open-path eddy covariance technique at 11.6&nbsp;m. Supplementary measurements above the canopy include temperature and humidity (11.6&nbsp;m), windspeed and wind direction (9.25&nbsp;m), downwelling and upwelling shortwave and longwave radiation (12.2&nbsp;m). Precipitation is monitored in a canopy gap (2.5&nbsp;m). Supplementary measurements within and below the canopy include barometric pressure (1&nbsp;m), wind speed (2&nbsp;m, 4.25&nbsp;m and 6.5&nbsp;m), and temperature and humidity (2&nbsp;m, 4.25&nbsp;m and 6&nbsp;m). Below ground soil measurements are made in bare soil, mulga, and understory habitats and include ground heat flux (0.08&nbsp;m), soil temperature (0.02&nbsp;m – 0.06&nbsp;m) and soil moisture (0 – 0.1&nbsp;m, 0.1 – 0.3&nbsp;m, 0.6 – 0.8&nbsp;m and 1.0 – 1.2&nbsp;m). Ancillary measurements include soil water and carbon fluxes, leaf water potential, leaf gas exchange, stem basal area, stem growth, litter production, leaf area index, stem hydraulic conductance, and carbon and water stable isotope ratios. <br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The Yarramundi Irrigated site is an improved, managed pasture on the Western Sydney University Hawkesbury campus. Original woodland vegetation was cleared prior to 1950. A mixture of native and exotic grasses and forbs dominate the site, which is used by cattle in an intensively managed grazing operation. The flux tower was established in October of 2019 and is managed by the Hawkesbury Institute for the Environment, with partial support from TERN and WSU Office of Estate and Commercial (Farm Production Unit).</br> <br>The climate is warm-temperate, with annual rainfall averaging 728&nbsp;mm, mean maximum temperature in January of 30.4&deg;C and mean minimum temperature in July of 3.6&deg;C (BOM station 067105). The elevation of the site is about 20&nbsp;m asl and the topography is flat. The soil is sandy loam in texture, organic carbon content is <1%.</br>