Keyword

ECOLOGICAL APPLICATIONS

191 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
From 1 - 10 / 191
  • Categories    

    Three maps are available: 1) foliage projective cover, 2) forest extent, attributed with the foliage projective cover and 3) accuracy of the extent maps, which also acts as masks of forest and other wooded lands. Each pixel in map 1 estimates the fraction of the ground covered by green foliage. Each pixel in map 2 shows two pieces of information. The first is a classification of whether the vegetation is forest or not. The pixels classified as forest are attributed with the second piece of information: the foliage projective cover. Each pixel in map 3 is a class that provides information on the classification accuracies of the woody extent. These maps are derived from Landsat.

  • Categories    

    The Australian Phenology Product is a continental data set that allows the quantitative analysis of Australia’s phenology derived from MODIS Enhanced Vegetation Index (EVI) data using an algorithm designed to accommodate Australian conditions. The product can be used to characterize phenological cycles of greening and browning and quantify the cycles’ inter and intra annual variability from 2003 to 2018 across Australia. Phenological cycles are defined as a period of EVI-measured greening and browning that may occur at any time of the year, extend across the end of a year, skip a year (not occur for one or multiple years) or occur more than once a year. Multiple phenological cycles within a year can occur in the form of double cropping in agricultural areas or be caused by a-seasonal rain events in water limited environments. Based on per-pixel greenness trajectories measured by MODIS EVI, phenological cycle curves were modelled and their key properties in the form of phenological curve metrics were derived including: the first and second minimum point, peak, start and end of cycle; length of cycle, and; the amplitude of the cycle. Integrated EVI under the curve between the start and end of the cycle time of each cycle is calculated as a proxy of productivity.

  • Categories    

    Two fractional cover decile products, green cover and total cover, are currently produced from the historical timeseries of seasonal fractional cover images. These products compare, at the per-pixel level, the level of cover for the specific season of interest against the long term cover for that same season. For each pixel, all cover values for the relevant seasons within a baseline period (1988-2013) are classified into deciles. The cover value for the pixel in the season of interest is then classified according to the decile in which it falls. This product is based upon the JRSRP Fractional Cover 3.0 algorithm.

  • Categories    

    This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product at <a href="https://portal.tern.org.au/metadata/24072"</a>. The seasonal dynamic reference cover method images are created using a modified version of the dynamic reference cover method developed by <a href="https://doi.org/10.1016/j.rse.2012.02.021">Bastin et al (2012) </a>. This approach calculates a minimum ground cover image over all years to identify locations of most persistent ground cover in years with the lowest rainfall, then uses a moving window approach to calculate the difference between the window's central pixel and its surrounding reference pixels. The output is a difference image between the cover amount of a pixel's reference pixels and the actual cover at that pixel for the season being analysed. Negative values indicate pixels which have less cover than the reference pixels. <br> The main differences between this method and the original method are that this method uses seasonal fractional ground cover rather than the preceding ground cover index (GCI) and this method excludes cleared areas and certain landforms (undulating slopes), which are considered unsuitable for use as reference pixels.

  • Categories    

    Fire Frequency is derived from a time series of burnt area maps (derived from the Advanced Very High Resolution Radiometer (AVHRR)) and provides the average number of fires affecting an area in the given time period. It is the inverse of the fire return interval.

  • Categories    

    This product provides locations of areas affected by fire including the approximate day of burning. Inputs are daily day time observations from MODIS sensors on Terra and Aqua. Observations are atmospherically corrected and the resulting time series is investigated for sudden changes in reflectance, persistent over multiple days. Variations in observation and illumination geometry are taken into account through application of a kernel driven Bidirectional Reflectance Distribution Function (BRDF) model.

  • Categories    

    The dataset consists of composited seasonal surface reflectance images (4 seasons per year) created from the full time series of Sentinel-2 imagery. The imagery has been composited over a season to produce imagery which is representative of that period, using techniques which will reduce contamination by cloud and other problems. This creates a regular time series of reflectance values which captures the variability at seasonal time scales. The benefits are a regular time series with minimal missing data or contamination from various sources of noise as well as data reduction. Each season has exactly one value (per band) for each pixel (or is null, i.e., missing), and the value for that season is assumed to be the representative of the whole season. The algorithm is based on the medoid (in reflectance space) over the time period (the medoid is a multi-dimensional analogue of the median), which is robust against extreme values. The seasonal surface reflectance is of the 6 TM-like bands (Blue, Green, Red, NIR, SWIR1, SWIR2), all at 10 m resolution. This dataset is intended to be a 10 m equivalent of the Landsat surface reflectance, using only Sentinel-2. The two 20m bands are resampled using cubic convolution. The pixel values are scaled reflectance, as 16-bit integers. To retrieve physical reflectance values, the pixel values should be multiplied by 0.0001.

  • Categories    

    The MODIS Land Condition Index (LCI) is an index of total vegetation cover (green and non-photosynthetic vegetation ), and so is also an index of soil exposure. The LCI is a normalised difference index based on MODIS bands in the mid-infrared portion of the spectrum. The index is produced from 500-m MODIS nadir BRDF adjusted reflectance (NBAR) data. As with all products derived from passive remote sensing imagery, this product represents the world as seen from above. Therefore, the cover recorded by this product represent what would be observed from a birds-eye-view. Therefore, dense canopy may prevent observation of significant soil exposure.

  • Categories    

    <p>Ground lidar, also known as Terrestrial Laser Scanning (TLS), is a ranging instrument that provides detailed 3D measurements directly related to the quantity and distribution of plant materials in the canopy. This dataset contains raw instrument data and ancillary data for numerous sites across northern and eastern Australia from 2012 onwards. Scans have been collected using two Riegl VZ400 waveform recording TLS instruments. One is co-owned and operated by the Remote Sensing Centre, Queensland Department of Environment and Science (DES) and the TERN Auscover Brisbane Node, University of Queensland. The second is owned and operated by Wageningen University, Netherlands.</p> <p>Data can be accessed from https://field.jrsrp.com/ by selecting the combinations Field, Ground Lidar. Raw data are accessible by selecting individual locations on the map and then clicking on the TLS scan directory link on the right hand site of the screen. </p>

  • Categories    

    RSMA measures change in the relative contributions of photosynthetic vegetation (PV, or GV green vegetation), non-photosynthetic vegetation (NPV) and soil reflectance compared to a baseline date. These spectral changes correspond to changes in fractional cover relative to the baseline date. Full details on the RSMA method are presented in Okin (2007). One of the key advantages of the RSMA, its insensitivity to changes in soil spectra, is a result of the fact that it does not require us to know the soil reflectance profile for a region. This strength is also the cause of a major weakness in RSMA. Since the measure is relative to a baseline date, and the absolute cover levels for every pixel are unknown at the baseline, the RSMA does not convey the absolute cover levels at any other point in time. However, if the absolute cover levels are known at any point in time, it is theoretically possible to convert the RSMA to absolute relative spectral mixture analysis (ARSMA).<br> As with all products derived from passive remote sensing imagery, this product represents the world as seen from above. Therefore, the cover recorded by this product represent what would be observed from a bird's-eye-view. Therefore, dense canopy may prevent observation of significant soil exposure.