ECOLOGICAL APPLICATIONS
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
<p>Hemispherical photography has been collected across Australia to characterise plant canopy cover and structure, and to study leaf area index. Hemispherical photography is a technique for quantifying plant canopies via photographs captured through a digital camera with hemispherical or fisheye lens. Such photographs can be captured from beneath the canopy, looking upwards, (orientated towards zenith) or above the canopy looking downwards. These measurements have typically been collected in conjunction with the Statewide Landcover and Trees Study (SLATS) star transects field data together with plant canopy analysers such as LAI-2200 and CI-110.</p> <p>Data can be downloaded from https://field.jrsrp.com/ by selecting the combination Field and Hemispheric imagery. Photographs can be accesed through the right-hand side panel, or by finding the file_loc attribute in the csv file. </p>
-
Seasonal dynamic reference cover method - Landsat, JRSRP, Queensland and Northern Territory Coverage
This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product here <a href="https://portal.tern.org.au/metadata/24072">Seasonal dynamic reference cover method - Landsat, JRSRP algorithm version 3.0, Queensland Coverage</a>. The seasonal dynamic reference cover method images are created using a modified version of the dynamic reference cover method developed by <a href="https://doi.org/10.1016/j.rse.2012.02.021">Bastin et al (2012)</a>. This approach calculates a minimum ground cover image over all years to identify locations of most persistent ground cover in years with the lowest rainfall, then uses a moving window approach to calculate the difference between the window's central pixel and its surrounding reference pixels. The output is a difference image between the cover amount of a pixel's reference pixels and the actual cover at that pixel for the season being analysed. Negative values indicate pixels which have less cover than the reference pixels. <br> The main differences between this method and the original method are that this method uses seasonal fractional ground cover rather than the preceding ground cover index (GCI) and this method excludes cleared areas and certain landforms (undulating slopes), which are considered unsuitable for use as reference pixels.
-
This product provides locations of areas affected by fire including the approximate day of burning. Inputs are daily day time observations from MODIS sensors on Terra and Aqua. Observations are atmospherically corrected and the resulting time series is investigated for sudden changes in reflectance, persistent over multiple days. Variations in observation and illumination geometry are taken into account through application of a kernel driven Bidirectional Reflectance Distribution Function (BRDF) model.
-
The data set is a statewide annual composite of fire scars (burnt area) derived from all available Landsat 5, 7 and 8 images acquired over the period January to December using time series change detection. Fire scars are automatically detected and mapped using dense time series of Landsat imagery acquired over the period 1987 - present. In addition, from 2013, products have undergone significant quality assessment and manual editing. The automated Landsat fire scar map products covering the period 1987-2012 were validated using a Landsat-derived data set of over 500,000 random points sampling the spatial and temporal variability. On average, over 80% of fire scars captured in Landsat imagery have been correctly mapped with less than 30% false fire rate. These error rates are significantly reduced in the edited 2013-2016 fire scar data sets, although this has not been quantified. <br> For the 2016 annual fire scar composite, the manual editing stage incorporated Landsat and Sentinel 2A imagery (resampled to match Landsat spatial resolution), allowing for increased cloud-free ground observations, and an associated reduction in the number of missed fires (not quantified). Sentinel 2A images were primarily used to map fire scars that were otherwise undetectable in the Landsat sequence due to cloud cover/Landsat revisit time. Additionally, Landsat-7 SLC-Off imagery (affected by striping) was excluded from the 2016 annual composite. It is expected that these modifications should result in improved mapping accuracy for the 2016 period.<br> A new fire scar detection algorithm has been developed, with a new edited product implemented in 2021.
-
Three maps are available: 1) foliage projective cover, 2) forest extent, attributed with the foliage projective cover and 3) accuracy of the extent maps, which also acts as masks of forest and other wooded lands. Each pixel in map 1 estimates the fraction of the ground covered by green foliage. Each pixel in map 2 shows two pieces of information. The first is a classification of whether the vegetation is forest or not. The pixels classified as forest are attributed with the second piece of information: the foliage projective cover. Each pixel in map 3 is a class that provides information on the classification accuracies of the woody extent. These maps are derived from Landsat.
-
The linear seasonal persistent green trend is derived from analysis of the seasonal persistent green product over time. The current version is based on the 1987-2014 period. <br> Seasonal persistent green cover is derived from seasonal fractional cover using a weighted smooth spline fitting routine. This weights a smooth line to the minimum values of the seasonal green cover. This smooth minimum is designed to represent the slower changing green component, ideally consisting of perennial vegetation including over-storey, mid-storey and persistent ground cover. The seasonal persistent green is then summarized using simple linear regression, and the slope of the fitted line is captured in this product. The original units are percentage points per year. Values are later truncated and scaled.
-
The Australian Phenology Product is a continental data set that allows the quantitative analysis of Australia’s phenology derived from MODIS Enhanced Vegetation Index (EVI) data using an algorithm designed to accommodate Australian conditions, described in Xie et al. 2023. The product can be used to characterize phenological cycles of greening and browning and quantify the cycles’ inter and intra annual variability from 2003 to 2018 across Australia. Phenological cycles are defined as a period of EVI-measured greening and browning that may occur at any time of the year, extend across the end of a year, skip a year (not occur for one or multiple years) or occur more than once a year. Multiple phenological cycles within a year can occur in the form of double cropping in agricultural areas or be caused by a-seasonal rain events in water limited environments. Based on per-pixel greenness trajectories measured by MODIS EVI, phenological cycle curves were modelled and their key properties in the form of phenological curve metrics were derived including: the first and second minimum point, peak, start and end of cycle; length of cycle, and; the amplitude of the cycle. Integrated EVI under the curve between the start and end of the cycle time of each cycle is calculated as a proxy of productivity.
-
Statewide composite of fire scars (burnt area) derived from all available Sentinel-2 images acquired over Queensland. It is available in both monthly and annual composites. Fire scars have been mapped using an automated change detection method, with supplementary manual interpretation. This data contains both automated and manually edited data.
-
The climate adjusted linear seasonal persistent green trend is derived from analysis of the linear seasonal persistent green trend, adjusted for rainfall. The current version is based on the 1987-2014 period. <br> Seasonal persistent green cover is derived from seasonal cover using a weighted smooth spline fitting routine. This weights a smooth line to the minimum values of the seasonal green cover. This smooth minimum is designed to represent the slower changing green component, ideally consisting of perennial vegetation including over-storey, mid-storey and persistent ground cover. The seasonal persistent green is then summarised using simple linear regression, and the slope of the fitted line is captured in the linear seasonal persistent green product. This product is further processed to produce a climate-adjusted version.
-
Foliage Projective Cover (FPC) is the percentage of ground area occupied by the vertical projection of foliage. The Remote Sensing Centre FPC mapping is based on regression models applied to dry season (May to October) Landsat-5 TM, Landsat-7 ETM+ and Landsat-8 OLI imagery for the period 1988-2014. An annual woody spectral index image is created for each year using a multiple regression model trained from field data collected mostly over the period 1996-1999. A robust regression of the time series of the annual woody spectral index is then performed. The estimated foliage projective cover is the prediction at the date of the selected dry season image for 2014. Where this deviates significantly from the woody spectral index for that date, further tests are undertaken before this estimate is accepted. In some cases, the final estimate is the woody spectral index value rather than the robust regression prediction. The product is further masked to remove areas classified as non-woody.