Annual
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
The datasets in this series comprise predictions of biocondition for Queensland's Bioregions. The datasets are created using a gradient boosting decision tree (GBDT) model based on eight vegetation specific remote sensing (RS) datasets and 17,000 training sites of known vegetation community and condition state. Condition score was modelled as of the difference in the RS space within homogeneous vegetation communities. The product is intended to represent predicted BioCondition for year 2019 rather than any single date.
-
This collection contains the data used in the Multi-Criteria Analysis Shell for Spatial Decision Support (MCAS-S) software tool. From the Data menu, explore and download individual supplementary layers, or download the entire datapack. The Multi-Criteria Analysis Shell for Spatial Decision Support (MCAS-S) is a software tool developed by the Australian Bureau of Agricultural and Resource Economics and Sciences that enables multi-criteria analysis (MCA) using spatial data. It is a powerful, easy-to-use and flexible decision-support tool that promotes: - framework for assessing options <br> - common metric for classifying, ranking and weighting of the data <br> - tools to compare, combine and explore spatial data <br> - live-update of alternative scenarios and trade-offs. <br>
-
High quality passive infrared wildlife cameras were used to acquire information on faunal biodiversity at the Robson Creek site. Two camera traps were deployed at the site between 17-03-2018 and 25-07-2018. The first camera located in proximity to the acoustic sensor SM2/SM4 which is around 100m from the flux tower and at a height of 1.5 meter above ground, on a star picket. The second camera located for a short while near the tower (10 meter) and was attached on a bungy cord tied to a tree, at a height of 0.3 meter above ground.<br><br> The Robson Creek site lies on the Atherton Tablelands in the wet tropical rain forests of Australia at 680-740 m elevation. It is situated in Danbulla National Park within the Wet Tropics World Heritage Area. The Wet Tropics Bioregion of Australia is situated on the north-eastern coast of Queensland, between Cooktown to the north and Townsville to the south. Approximately 40% (7200 km2) of the region is covered by rain forest. Features of the region include very high plant and animal endemism, characteristics of both Gondwanan and Indo-Malaysian forests, and frequent cyclonic disturbance. The site includes core 1 ha plot (100 m x 100 m) which is located within the fetch of the flux tower and is the focal site of recurrent monitoring, and 25 ha vegetation survey plot. The vegetation survey plot has been set up for inclusion in the Smithsonian Tropical Research Institute’s Center for Tropical Forest Science – Forest Global Earth Observatory (CTFS-ForestGEO) global network of forest research plots. <br><br> For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/robson-creek-rainforest-supersite/ . <br /><br /> Other images collected at the site include time-lapse images taken from 3 phenocams (above canopy). <br /><br /> <iframe allow="autoplay; encrypted-media" allowfullscreen="" frameborder="0" src="https://www.youtube.com/watch?v=WW-cpPMhMz4" title="TERN Robson Creek SuperSite Wildlife 2017" style="height:248px;width:462px;"></iframe> <br />Camera trap results for the TERN FNQ Rainforest SuperSite - Robson Creek, Jan - Feb 2017.
-
The woody vegetation extent for Queensland is attributed with an estimated age in years since the last significant disturbance. The method uses a sequential Conditional Random Fields classifier applied to Landsat time series starting 1988 to predict woody cover over the time period. A set of heuristic rules is used to detect and track regrowing woody vegetation in the time series of woody probabilities and record the approximate start and end dates of the most recent regrowth event. Regrowth detection is combined with the Statewide Land and Trees Study (SLATS) Landsat historic clearing data to provide a preliminary estimate of age since disturbance for each woody pixel in the woody extent. The 'last disturbance' may be due to a clearing event or other disturbance such as fire, flood, drought-related death etc. Note that not all recorded disturbances may result in complete loss of woody vegetation, so the estimated age since disturbance does not always represent the age of the ecosystem. The age since disturbance product is derived from multiple satellite image sources and derived products which represent different scales and resolutions: Landsat (30 m), Sentinel-2 (10 m) and Earth-i (1 m).
-
This dataset contains spatial layers describing Forest Canopy Loss and Recovery from 1998-2019 in NSW Regional Forest Agreements (RFA) Areas along the eastern coast. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2020). These base grids are Landsat in origin and have a resolution of 25m. <br> For this dataset product and the processing of metrics, aspects of canopy loss and disturbances in the forest estate were investigated. Measures of canopy loss and recovery are seen as one of the multiple indicators of forest health. This is related to agents or pressures that affect the capacity of native forests and commercial operations to maintain normal ecosystem functions and sustainably provide productive capacity. <br> To attribute disturbances, as a driver of change, a Multiple Lines of Evidence (MLE) approach was used that leveraged available spatial datasets. This allowed for a project-wide disturbance and disturbance context layer to be generated. This information can be interpreted back against forest cover extent change outputs, in particular the differences between individual years, to identify the areas of change and the likely reasons why. Therefore, landscape trends in forest loss can be potentially assigned or at the very least investigated. <br> The time taken, in terms of years, for areas to recover from losses in forest canopy cover extent can has also been determined. This process identifies the time taken for a patch of forest to return to a 20% canopy cover threshold, and other characteristics such as the forest type and likely disturbance or loss event. <br> Forest Canopy Loss and Recovery uses measures of canopy loss and disturbances which can be interpreted back against forest cover extent change outputs, in particular the differences between individual years, to identify the areas of change and the likely reasons why. Therefore, landscape trends in forest canopy loss can be potentially assigned or at the very least investigated. Time taken in years for areas to recover for losses has also been determined, as-well as other characteristics such as forest type and likely disturbance/loss event. <br> Base cover extent grids used are from the NSW RFA Historic Forest Canopy Cover Extent – 1995 to 2019 product. Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/fmip-baselines-ecosystem-health-projectfe1<br> This dataset is superseded by 'NSW Forest Monitoring and Improvement Program State-Wide Historic Forest Canopy Loss and Recovery - 1998 to 2020'
-
The spatial layers in this dataset detail forest cover extent over NSW. They have been created for the NSW Natural Resources Commission to detail historic baseline and trends of forest cover extent coverage for NSW for all land tenures, including all RFAs and IFOAs. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2021). These base grids are Landsat in origin and have a resolution of 25m. <br> These base grids have been processed through a series of land use and vegetation type exclusion masking and a through a fuzzy-logic based certainty analysis to reflect a forest cover extent coverage for NSW that is reflective of past and current coverage. <br> These grids cover the years from 1995 to 2020. The year gaps are triennial or biennial data layers from 1995 to 2004. 1996,1997,1999,2001,2003 years missing as these were not assessed in original applied database. From 2004 to 2020 data layers become annualised.<br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/fmip-baselines-ecosystem-health-projectfe1<br> This dataset supersedes "NSW Forest Monitoring and Improvement Program RFA Historic Forest Cover Extent – 1995 to 2019". https://portal.tern.org.au/metadata/23696.
-
This dataset contains spatial layers describing Forest Loss and Recovery from 1998-2020 in NSW. For this dataset product and the processing of metrics, aspects of canopy loss and disturbances in the forest estate were investigated. Measures of canopy loss and recovery are seen as one of the multiple indicators of forest health. This is related to agents or pressures that affect the capacity of native forests and commercial operations to maintain normal ecosystem functions and sustainably provide productive capacity. <br> To attribute disturbances, as a driver of change, a Multiple Lines of Evidence (MLE) approach was used that leveraged available spatial datasets. This allowed for a project-wide disturbance and disturbance context layer to be generated. This information can be interpreted back against forest cover extent change outputs, in particular the differences between individual years, to identify the areas of change and the likely reasons why. Therefore, landscape trends in forest loss can be potentially assigned or at the very least investigated. <br> The time taken, in terms of years, for areas to recover from losses in forest cover extent can has also been determined. This process identifies the time taken for a patch of forest to return to a 20% canopy cover threshold, and other characteristics such as the forest type and likely disturbance or loss event.<br> Base cover extent grids used are from the NSW State-wide Historic Forest Cover Extent – 1995 to 2020 product. These have been processed through a series of land use and vegetation type exclusion masking and a through a fuzzy-logic based certainty analysis to reflect a forest cover extent coverage for NSW that is reflective of past and current coverage. <br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/fmip-baselines-ecosystem-health-projectfe1<br> This dataset supersedes "NSW Forest Monitoring and Improvement Program RFA Historic Forest Loss and Recovery – 1998 to 2019".
-
<p> This data set provides the photosynthetic pathways for 4832 species recorded across plots surveyed by Australia’s Terrestrial Ecosystem Research Network (TERN) between 2011 and May 2022 (inclusive). TERN survey plots are 1 ha (100 x 100 m) permanently established sites located in a homogeneous area of terrestrial vegetation. At each plot, TERN survey teams record vegetation composition and structural characteristics and collect a range of plant samples using a point-intercept method. Species were assigned a photosynthetic pathway using literature and carbon stable isotope analysis of bulk tissue collected by TERN at the survey plots. </p><p>The data set is comprised of one data table that contains a list of each species and its photosynthetic pathway, and one metadata file which provides a data descriptor that defines data values and a list of all the peer-reviewed sources used to create this data set. </p> Version 1 (2020) included the photosynthetic pathways of 2428 species recorded across TERN plots surveyed between 2011 and 2017 (inclusive) and was originally published in 2020. Key updates in version 2 (2024) include an expanded species list and updated taxonomy were applicable </p>
-
<p>Digital Cover Photography (DCP) upward-looking images were collected annually to capture vegetation cover at the TERN Karawatha Peri-Urban SuperSite. These images can be used to estimate Leaf area index (LAI), Crown Cover or Foliage Projective Cover (FPC). </p><p> The Karawatha Peri-Urban SuperSite was established in 2007 and decommissioned in 2018. The site was located in Eucalypt forest at Karawatha Forest. For additional site information, see https://deims.org/f15bc7aa-ab4a-443b-a935-dbad3e7101f4 . </p><p> Other images collected at the site include photopoints and ancilliary images of fauna and flora. </p>
-
NSW Forest Monitoring and Improvement Program RFA Historic Forest Canopy Cover Extent - 1995 to 2019
This dataset contains spatial layers describing Forest Canopy Extent from 1995-2019 in NSW Regional Forest Agreements (RFA) Areas along the eastern coast. Forest Canopy Extent is the likelihood that a certain area has forest at any given time. Forest Canopy is defined in accordance with the National State of the Forests Report which defines forests as containing as a minimum, a mature or potentially mature stand height exceeding 2 metres, stands dominated by trees usually having a single stem, where the mature or potentially mature stand component comprises 20% canopy coverage using a Crown Projective Cover (CPC) measure. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2020). These base grids are Landsat in origin and have a resolution of 25m. <br> To calculate forest canopy extent, these base grids have been processed through a series of land use and vegetation type exclusion masking and a through a fuzzy-logic based certainty analysis to reflect a forest cover extent coverage for NSW that is reflective of past and current coverage.<br> Read more about the project on the Natural Resources Commission website:<br> https://www.nrc.nsw.gov.au/fmip-baselines-ecosystem-health-projectfe1<br> This dataset is superseded by 'NSW Forest Monitoring and Improvement Program State-Wide Historic Forest Canopy Cover Extent - 1995 to 2020'