Keyword

Annual

58 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
From 1 - 10 / 58
  • Categories    

    This collection contains the data used in the Multi-Criteria Analysis Shell for Spatial Decision Support (MCAS-S) software tool. From the Data menu, explore and download individual supplementary layers, or download the entire datapack. The Multi-Criteria Analysis Shell for Spatial Decision Support (MCAS-S) is a software tool developed by the Australian Bureau of Agricultural and Resource Economics and Sciences that enables multi-criteria analysis (MCA) using spatial data. It is a powerful, easy-to-use and flexible decision-support tool that promotes: - framework for assessing options <br> - common metric for classifying, ranking and weighting of the data <br> - tools to compare, combine and explore spatial data <br> - live-update of alternative scenarios and trade-offs. <br>

  • Categories    

    <p>This data set provides the photosynthetic pathways for 2428 species recorded across 541 plots surveyed by Australia’s Terrestrial Ecosystem Research Network (TERN) between 2011 and 2017 (inclusive). TERN survey plots are 1 ha (100 x 100 m) permanently established sites located in a homogeneous area of terrestrial vegetation. At each plot, TERN survey teams record vegetation composition and structural characteristics and collect a range of plant samples using a point-intercept method. Species were assigned a photosynthetic pathway using literature and carbon stable isotope analysis of bulk tissue collected by TERN at the survey plots. </p><p>The data set is comprised of two data tables and one data descriptor that defines the values in the two data tables. The first table contains a list of each species and its photosynthetic pathway. The second table includes a list of all the peer-reviewed sources used to create this data set. </p><p>This data set will be updated on an annual basis as TERN’s plot network expands and new information becomes available. </p>

  • Categories    

    The linear seasonal persistent green trend is derived from analysis of the seasonal persistent green product over time. The current version is based on the 1987-2014 period. <br> Seasonal persistent green cover is derived from seasonal fractional cover using a weighted smooth spline fitting routine. This weights a smooth line to the minimum values of the seasonal green cover. This smooth minimum is designed to represent the slower changing green component, ideally consisting of perennial vegetation including over-storey, mid-storey and persistent ground cover. The seasonal persistent green is then summarized using simple linear regression, and the slope of the fitted line is captured in this product. The original units are percentage points per year. Values are later truncated and scaled.

  • Categories    

    <p>Digital Hemispherical Photography (DHP) upward-looking images were collected annually to capture vegetation and crown cover at Daintree Rainforest SuperSite. These images are used to estimate Leaf Area Index (LAI). </p><p> The site is located in lowland complex mesophyll vine forest near Cape Tribulation. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/daintree-rainforest-supersite/ . </p><p> Other images collected at the site include photopoints, phenocam time-lapse images taken from fixed under and overstorey cameras and ancilliary images of fauna and flora. </p>

  • Categories    

    Digital Cover Photography (DCP) upward-looking images will be collected up to twice per year to capture vegetation cover at Boyagin Wandoo Woodland SuperSite. These images can be used to estimate Leaf area index (LAI), Crown Cover or Foliage Projective Cover (FPC). The Boyagin Wandoo Woodland SuperSite was established in 2017 in Wandoo Woodland, which is surrounded by broadacre farming. About 80% of the overstorey cover is <em>Eucalyptus accedens</em>. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/boyagin-wandoo-woodland-supersite/ . Digital Hemispheric Photography (DHP) has also been collected at Boyagin SuperSite.

  • Categories    

    The physical drivers of ecosystem formation – macroclimate, lithology and landform – along with vegetation structural formations are key determinants of current ecosystem type. Each combination of these ecosystem drivers – each ‘ecological facet’ – provides a unique set of opportunities and challenges for life. <br> Management and conservation should seek to understand and take in to account these drivers of ecosystem formation. By understanding the unique combinations of these drivers management strategies can plan for their full range of variation, and conservation efforts can ensure that unique ecosystems are not lost. Unfortunately, there is currently no Australia-wide standardized map of ecological facets at management-appropriate scales. <br> By understanding the magnitude and distribution of unique combinations of these drivers, management strategies can plan for their full range of variation, and conservation efforts can ensure that unique ecosystems are not lost. Additionally, by improving our understanding of the past and present conditions that have given rise to current ecological facets this dataset could facilitate future predictive environmental modelling. Finally, this data could assisting biodiversity conservation, climate change impact studies and mitigation, ecosystem services assessment, and development planning <br> Further information about the dataset can be found at <a href="https://ternaus.atlassian.net/wiki/spaces/TERNSup/pages/2276130817/GEOSS+Ecosystem+Map">GEOSS Ecosystem Map,TERN Knowledge Base </a> .

  • Categories    

    The climate adjusted linear seasonal persistent green trend is derived from analysis of the linear seasonal persistent green trend, adjusted for rainfall. The current version is based on the 1987-2014 period. <br> Seasonal persistent green cover is derived from seasonal cover using a weighted smooth spline fitting routine. This weights a smooth line to the minimum values of the seasonal green cover. This smooth minimum is designed to represent the slower changing green component, ideally consisting of perennial vegetation including over-storey, mid-storey and persistent ground cover. The seasonal persistent green is then summarised using simple linear regression, and the slope of the fitted line is captured in the linear seasonal persistent green product. This product is further processed to produce a climate-adjusted version.

  • Categories    

    The NSW Carbon Monitoring project is a collaboration between the Natural Resources Commission of NSW and Mullion Group to develop a spatial time-series dataset of forest carbon history for the state of NSW at ~25m resolution. The project used FLINTpro software to integrate historical environmental and land management data to model carbon stock and fluxes. Aboveground biomass refers to the amount of carbon stored within aboveground forest components (pools) which includes leaves, branches, bark and stems. Belowground biomass refers to the amount of carbon stored within belowground forest components (pools) which includes coarse and fine roots. Dead Organic Matter refers to the amount of carbon stored within dead forest components (pools) which includes leaf litter, branch litter, bark litter, stem litter, and dead roots. Carbon stored within soil and harvested wood products is not included within any of these datasets.

  • Categories    

    This dataset contains spatial layers describing Forest Loss and Recovery from 1998-2019 in NSW Regional Forest Agreements (RFA) Areas along the eastern coast. <br> These have been based off the National Greenhouse Gas Inventory (NGGI) National Carbon Accounting System (NCAS) National Forest and Sparse Woody Vegetation Data grids (ABARES, 2020). These base grids are Landsat in origin and have a resolution of 25m. <br> For this dataset product and the processing of metrics, aspects of canopy loss and disturbances in the forest estate were investigated. Measures of canopy loss and recovery are seen as one of the multiple indicators of forest health. This is related to agents or pressures that affect the capacity of native forests and commercial operations to maintain normal ecosystem functions and sustainably provide productive capacity. <br> To attribute disturbances, as a driver of change, a Multiple Lines of Evidence (MLE) approach was used that leveraged available spatial datasets. This allowed for a project-wide disturbance and disturbance context layer to be generated. This information can be interpreted back against forest cover extent change outputs, in particular the differences between individual years, to identify the areas of change and the likely reasons why. Therefore, landscape trends in forest loss can be potentially assigned or at the very least investigated. <br> The time taken, in terms of years, for areas to recover from losses in forest cover extent can has also been determined. This process identifies the time taken for a patch of forest to return to a 20% canopy cover threshold, and other characteristics such as the forest type and likely disturbance or loss event. <br> Forest Loss and Recovery uses measures of canopy loss and disturbances which can be interpreted back against forest cover extent change outputs, in particular the differences between individual years, to identify the areas of change and the likely reasons why. Therefore, landscape trends in forest loss can be potentially assigned or at the very least investigated. Time taken in years for areas to recover for losses has also been determined, as-well as other characteristics such as forest type and likely disturbance/loss event. <br> Base cover extent grids used are from the NSW RFA Historic Forest Cover Extent – 1995 to 2019 product.

  • Categories    

    <p>Digital Cover Photography (DCP) upward-looking images were collected annually to capture vegetation cover at the TERN Karawatha Peri-Urban SuperSite. These images can be used to estimate Leaf area index (LAI), Crown Cover or Foliage Projective Cover (FPC). </p><p> The Karawatha Peri-Urban SuperSite was established in 2007 and decommissioned in 2018. The site was located in Eucalypt forest at Karawatha Forest. For additional site information, see https://deims.org/f15bc7aa-ab4a-443b-a935-dbad3e7101f4 . </p><p> Other images collected at the site include photopoints and ancilliary images of fauna and flora. </p>