Creation year

2022

112 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
From 1 - 10 / 112
  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. The dataset has been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Cumberland Plain flux station is located in a dry sclerophyll forest. The Cumberland Plain Woodland is now an endangered ecological community that encompasses distinct groupings of plants growing on clayey soils. The canopy is dominated by <em>Eucalyptus moluccana</em> and <em>Eucalyptus fibrosa</em>, which host an expanding population of mistletoe. Average canopy height is 23m, the elevation of the site is 20m and mean annual precipitation is 800mm. <br /> <br />Fluxes of water vapour, carbon dioxide and heat are quantified with the open-path eddy flux technique from a 30 m tall mast. Additional measurements above the canopy include temperature, humidity, wind speed and direction, rainfall, incoming and reflected shortwave and longwave radiation and net, diffuse and direct radiation and the photochemical reflectance index. In addition, profiles of humidity and CO2 are measured at eight levels within the canopy, as well as measurements of soil moisture content, soil heat fluxes, soil temperature, and 10-hr fuel moisture dynamics. In addition, regular monitoring of understory species abundance, mistletoe infection, leaf area index and litterfall are also performed. <br />For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/cumberland-plain-supersite/ . <br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The flux station was established in 2017 in Wandoo Woodland, which is surrounded by broadacre farming. About 80% of the overstorey cover is <em>Eucalyptus accedens</em> Climate information comes from the nearby Pingelly BoM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445 mm with highest rainfall in June and July of 81 mm each month. Maximumum and minuimum annual rainfall is 775 and 217 mm, respectively. Maximum temperatures range from 31.9°C (in Jan) to 15.4°C (in July), while minimum temperatures range from 5.5°C (in July) to 16.0 °C (in Feb). The Noongar people are the traditional owners at Boyagin. <br />For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/boyagin-wandoo-woodland-supersite/ . <br /><br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Alice Springs Mulga flux station is located on Pine Hill cattle station, near Alice Springs in the Northern Territory. The woodland is characterized by the <i>Acacia aneura</i> canopy, which is 6.5&nbsp;m tall on average. Elevation of the site is 606&nbsp;m above sea level, and the terrain is flat. Mean annual precipitation at the nearby (45&nbsp;km distant) Bureau of Meteorology station is 305.9&nbsp;mm but ranges between 100&nbsp;mm in 2009 to 750&nbsp;mm in 2010. Predominant wind directions are from the southeast and east. The extent of the woodland is 11&nbsp;km to the east of the flux station and 16&nbsp;km to the south. The soil is red sandy clay (50:50 sand:clay) overlying a 49&nbsp;m deep water table. Pine Hill Station is a functioning cattle station that has been in operation for longer than 50 years. The instrument mast is 13.7&nbsp;m tall. Fluxes of heat, water vapour and carbon are measured using the open-path eddy covariance technique at 11.6&nbsp;m. Supplementary measurements above the canopy include temperature and humidity (11.6&nbsp;m), windspeed and wind direction (9.25&nbsp;m), downwelling and upwelling shortwave and longwave radiation (12.2&nbsp;m). Precipitation is monitored in a canopy gap (2.5&nbsp;m). Supplementary measurements within and below the canopy include barometric pressure (1&nbsp;m), wind speed (2&nbsp;m, 4.25&nbsp;m and 6.5&nbsp;m), and temperature and humidity (2&nbsp;m, 4.25&nbsp;m and 6&nbsp;m). Below ground soil measurements are made in bare soil, mulga, and understory habitats and include ground heat flux (0.08&nbsp;m), soil temperature (0.02&nbsp;m – 0.06&nbsp;m) and soil moisture (0 – 0.1&nbsp;m, 0.1 – 0.3&nbsp;m, 0.6 – 0.8&nbsp;m and 1.0 – 1.2&nbsp;m). Ancillary measurements include soil water and carbon fluxes, leaf water potential, leaf gas exchange, stem basal area, stem growth, litter production, leaf area index, stem hydraulic conductance, and carbon and water stable isotope ratios. <br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /><br /> The site is woodland savanna with an overstory co-dominated by tree species <em>E. tetrodonta</em>, <em>C. latifolia</em>, <em>Terminalia grandiflora</em>, <em>Sorghum sp.</em> and <em>Heteropogon triticeus</em>. Average canopy height measures 16.4 m. <br />Elevation of the site is close to 110m and mean annual precipitation at a nearby Bureau of Meteorology site is 1170mm. Maximum temperatures range from 37.5°C (in October) to 31.2°C (in June), while minimum temperatures range from 12.6°C (in July) to 23.8°C (in January). Maximum temperatures range seasonally by 6.3°C and minimum temperatures by 11.2°C. <br /><br />The instrument mast is 23 meters tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy.<br />Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008. <br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The flux station was established in August 2011 while the site supported tropical savanna. The site was part of a deforestation experiment measuring greenhouse gas exchange during conversion of forest to farmland. The land was being cultivated for watermelon production from 2013.<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The site was situated within a wetland that flooded seasonally. The principle vegetation was <em>Oryza rufipogon</em>, <em>Pseudoraphis spinescens</em> and <em>Eleocharis dulcis</em>. The elevation was approximately 4m, with a neighbouring Bureau of Meteorology station recording 1411mm mean annual precipitation.Maximum temperatures ranged from 31.3°C (in June and July) to 35.6°C (in October), while minimum temperatures ranged from 14.9°C (in July) to 23.9°C (in December and February). Maximum temperatures varied on a seasonal basis by approximately 4.3°C and minimum temperatures by 9.0°C.<br /> <br /> The instrument mast was 15m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation were measured above the canopy. Soil heat fluxes were measured and soil moisture content was gathered using time domain reflectometry.<br /> Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008. <br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.1) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>.<br /> <br />The Alice Springs Mulga flux station is located on Pine Hill cattle station, near Alice Springs in the Northern Territory. The woodland is characterized by the Acacia aneura canopy, which is 6.5m tall on average. Elevation of the site is 606m above sea level, and the terrain is flat. Mean annual precipitation at the nearby (45km distant) Bureau of Meteorology station is 305.9mm but ranges between 100mm in 2009 to 750mm in 2010. Predominant wind directions are from the southeast and east.The extent of the woodland is 11km to the east of the flux station and 16km to the south. The soil is red sandy clay (50:50 sand:clay) overlying a 49m deep water table. Pine Hill Station is a functioning cattle station that has been in operation for longer than 50 years.The instrument mast is 13.7m tall. Fluxes of heat, water vapour and carbon are measured using the open-path eddy covariance technique at 11.6m. Supplementary measurements above the canopy include temperature and humidity (11.6m), windspeed and wind direction (9.25m), downwelling and upwelling shortwave and longwave radiation (12.2m). Precipitation is monitored in a canopy gap (2.5m). Supplementary measurements within and below the canopy include barometric pressure (1m), wind speed (2m, 4.25m and 6.5m), and temperature and humidity (2m, 4.25m and 6m). Below ground soil measurements are made in bare soil, mulga, and understory habitats and include ground heat flux (0.08m), soil temperature (0.02m – 0.06m) and soil moisture (0 – 0.1m, 0.1 – 0.3m, 0.6 – 0.8m and 1.0 – 1.2m). Ancillary measurements include soil water and carbon fluxes, leaf water potential, leaf gas exchange, stem basal area, stem growth, litter production, leaf area index, stem hydraulic conductance, and carbon and water stable isotope ratios. The site was established in September 2010 in conjunction with the Woodforde River NGCRT Superscience Site and is managed by the University of Technology Sydney.<br />For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/alice-mulga-supersite/ <br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /><br /> This is a topographically flat area, primarily comprised of the following soil types: sandy loams, scattered clays, red brown earths, transitional red brown earth, sands over clay and deep sands. Stream valleys and layered soil and sedimentary materials are found across the landscape. <br /><br /> The flux station tower extends to 20m, however flux measurements are recorded from slightly lower than this. Mean annual precipitation from a nearby Bureau of Meteorology site measured 465 mm. Maximum temperatures ranged from 37.4°C (in January) to 16.6°C (in July), while minimum temperatures ranged from 29.0°C (in January) to 11.8°C (in July). Maximum temperatures varied on a seasonal basis by approximately 20.8°C and minimum temperatures by 17.2°C. <br /> The site is within a wider research area (60 x 60 km) that supports a network of flux stations, which have been in operation since late 2001 onwards.<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The site was identified as tropical pasture dominated by species <em>Chamaecrista rotundifolia</em> (Round-leaf cassia cv. Wynn), <em>Digitaria milijiana</em> (Jarra grass) and <em>Aristida sp.</em> standing at approximately 0.3m tall. The soil at the site was a mixture of red kandosol and deep sand. Elevation of the site was close to 70m and mean annual precipitation at a nearby Bureau of Meteorology site was 1250mm. Maximum temperatures ranged from 37.5°C (in October) to 31.2°C (in June), while minimum temperatures ranged from 12.6°C (in July) to 23.8°C (in January). Maximum temperatures varied on a seasonal basis between 6.3°C while minimum temperatures varied by 11.2°C. <br /> <br /> The instrument mast was 15 meters tall. Heat, water vapour and carbon dioxide measurements were taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation were measured. <br />Ancillary measurements taken at the site included LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008. <br /> The site was destroyed by fire in September 2013. <br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Loxton site was established in August 2008 and decommissioned in June 2009. The orchard was divided into 10 ha blocks (200 m by 500 m with the long axis aligned north–south) and the flux tower was situated at 34.47035°S and 140.65512°E near the middle of the northern half of a block of trees. The topography of the site was slightly undulating and the area around the tower had a slope of less than 1.5°. The orchard was planted in 2000 with an inter-row spacing of 7 m and a within row spacing of 5 m. Tree height in August 2008 was 5.5 m. The study block consists of producers, Nonpareil, planted every other row, and pollinators planted as alternating rows of Carmel, Carmel and Peerless, and Carmel and Price. All varieties were planted on Nemaguard rootstock. All but 31 ha of the surrounding orchard was planted between 1999 and 2002. Nutrients were applied via fertigation. Dosing occurred between September and November and in April with KNO3, Urea, KCl, and NH4NO3 applied at annual rates of 551, 484, 647, and 113 kg/ha, respectively. The growth of ground cover along the tree line was suppressed with herbicides throughout the year. Growth in the mid-row began in late winter and persisted until herbicide application in late November. <br> The research was supported with funds from the National Action Plan for Salinity via the Centre for Natural Resource Management, and the River Murray Levy.<br />This data is also available at http://data.ozflux.org.au . <br>