Creation year

2021

67 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
From 1 - 10 / 67
  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br />The flux station site is located within an area of dryland agriculture. The surrounding area is dominated by broadacre farming practices. The vegetation cover is predominantly pasture. Elevation of the site is close to 152m and mean annual precipitation at a nearby Bureau of Meteorology site measures 650mm. Maximum temperatures range from 12.3°C (in July) to 29.7°C (in February), while minimum temperatures range from 10.4°C (in July) to 26.8°C (in February).<br /><br />The instrument mast is 4 meters tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall and net radiation are measured. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The flux station is located within an area of dryland agriculture. The surrounding area is dominated by broadacre farming practices. The vegetation cover is predominantly pasture. Elevation of the site is close to 330 m. Climate information comes from the nearby Pingelly BoM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445 mm with highest rainfall in June and July of 81 mm each month. Maximumum and minuimum annual rainfall is 775 and 217 mm, respectively. Maximum temperatures range from 31.9°C (in Jan) to 15.4°C (in July), while minimum temperatures range from 5.5°C (in July) to 16.0 °C (in Feb).<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The site was situated within a wetland that flooded seasonally. The principle vegetation was <em>Oryza rufipogon</em>, <em>Pseudoraphis spinescens</em> and <em>Eleocharis dulcis</em>. The elevation was approximately 4m, with a neighbouring Bureau of Meteorology station recording 1411mm mean annual precipitation.Maximum temperatures ranged from 31.3°C (in June and July) to 35.6°C (in October), while minimum temperatures ranged from 14.9°C (in July) to 23.9°C (in December and February). Maximum temperatures varied on a seasonal basis by approximately 4.3°C and minimum temperatures by 9.0°C.<br /> <br /> The instrument mast was 15m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation were measured above the canopy. Soil heat fluxes were measured and soil moisture content was gathered using time domain reflectometry.<br /> Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008. <br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The site is classified as an open woodland savanna. The overstory is co-dominated by tree species <em>Eucalyptus miniata</em> and <em>Eucalyptus tentrodonata</em>, and average tree height is 14–16m. Elevation of the site is close to 64m and mean annual precipitation is 1750mm. Maximum temperatures range from 30.4°C (in July) to 33.2°C (in November), while minimum temperatures range from 19.3°C (in July) to 25.4°C (in November). Therefore, the maximum and minimum range varies from 7°C (wet season) to 11°C (dry season). <br /><br /> The instrument mast is 23m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.<br /><br />

  • Categories    

    We selected nine study sites, each incorporating three vegetation states: (a) fallow cropland, representing the restoration starting point, (b) planted old field (actively restored site), and (c) reference York gum (E. loxophleba) woodland. Plant species richness and cover All annual and perennial plant species were recorded in spring 2017 within each plot and identified to genus and species level where possible. Nomenclatures follow the Western Australian Herbarium (2017). A point intercept method previously demonstrated to provide objective and repeatable measures of cover (Godínez-Alvarez, Herrick, Mattocks, Toledo & Van Zee 2009; Prober, Standish & Wiehl 2011) was used to quantify cover of individual plant species, total vegetation cover and substrate types (i.e., bare ground, litter cover, plant cover). Ground cover, individual species, and canopy cover intercepting at every 2 m along four parallel, evenly spaced 50 m transects across each plot were recorded using a vertically placed dowel (8 mm wide, 2 m tall), resulting in 100 intercepting points per plot. For planted old fields, transects were placed parallel to planting rows, with two centred on rows and two centred between rows. This approximately represented the relative abundance of planted rows and non-planted inter-rows. If a species was recorded in the plot but did not intercept the dowel on any transect it was assigned 0.5 points. This method provided a measure of relative abundance (percentage cover) of plant species across the plot. To calculate species richness and cover across different life history and growth forms, species were classified into the following groups: total, native trees, native shrubs, native non – planted shrubs, native grasses, native perennial forbs, native annual forbs, exotic grasses and exotic annual forbs using the Western Australian Herbarium (2017) classification. Woody debris and leaf litter surveys Leaf-litter dry mass was estimated by collecting leaf-litter from five randomly placed 25 cm x 25 cm quadrats along two 50 m transects across each plot. Litter was stored in paper bags for transportation and then oven dried for 36 hours at 60 °C. The dried litter was weighed to 3 decimal points. Cover of fine and coarse woody debris and litter depth was estimated at every meter along two 20 m transects for each plot. Woody debris was classified by diameter. Length, max and min diameter was measured for all logs with a diameter greater than 10 cm.

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /><br /> The site is classified as open forest savanna. The overstory is co-dominated by tree species <em>E. tetrodonta</em>, <em>E. dichromophloia</em>, <em>C. terminalis</em>, <em>Sorghum intrans</em>, <em>S. plumosum</em>, <em>Themeda triandra</em> and <em>Chrysopogon fallax</em>, with canopy height averaging 12.3m. Elevation of the site is close to 175m and mean annual precipitation from a nearby Bureau of Meteorology site measures 895.3mm. Maximum temperatures range from 29.1°C (in June) to 37.6°C (in July), while minimum temperatures range from 14.6°C (in July) to 24.8°C (in November). Maximum temperatures vary seasonally by 8.5°C and minimum by 10.2°C. <br /><br /> The instrument mast is 15 meters tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry. <br /> Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008. <br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki </a>. <br /> <br /> The forest is classed as a tall, wet sclerophyll forest, and the dominant <em>Eucalyptus Regnans</em> or Mountain Ash trees have an average canopy height of 75m. The site contains a chronosequence of (20, 80 and 300) stand ages that were established during fires occurring over the last 300 years. The area is assigned the IUCN Category II (National Parks) of the United Nations’ list of National Parks and protected areas, which means that park is primarily managed for ecosystem conservation. The catchment area is dominated by Mountain Ash, the world’s tallest flowering plant (angiosperm). Trees can reach heights of more than 90 metres in areas with high rainfall and fertile soil. Mountain ash forests are confined to the cool mountain regions with elevations ranging from 460 - 1100m and average rainfalls of 1100-2000mm. These trees are well distributed throughout Victoria’s Central Highlands including the Otway Ranges and Strzlecki Ranges; they are also found in Tasmania. The catchment area contains a portion of the Mt Disappointment range, the Divide and the headwaters of Wallaby Creek and Silver Creek, and much of the slopes are characterised as flat to moderate.<br /><br /> The station itself is located within an old growth stand with individual trees as old as 300 years. Below the dominant canopy lies a temperate rainforest understorey consisting of <em>Pomaderris aspera</em> and <em>Olearia argophylla</em> species, which are 10-18 metres tall. The lower layers of vegetation are dominated by tree ferns (<em>Cyathea australis</em> and <em>Dicksonia antartica</em>) and extensive tracts of rosette and rhizonic ferns (<em>Polystichum proliferum</em> and <em>Blechnum wattsii</em>) as well as Acacia trees. <br /> <br /> The major soil type within the forest is krasnozemic soils, which are friable red/brown, with high amounts of organic matter in the upper 20 – 30cm. However, the composition of krasnozemic soils is not homogenous, but rather a variation with altitude can be observed; lower altitudes inhabit grey-yellow podsolised soils compared to higher altitudes of the Kinglake and Hume plateau where the soil composition is krasnozemic loams. The clay content of these soils increases with depth until at least 200 cm deep, where after a transition soils contain rock fragments. The elevation is approximately 720 metres.<br /><br /> The original station was destroyed in February 2009 by bushfires. Before the bushfire, the main mast stood at 110m. In March 2010, a replacement station was established and sat at a height of 5m. Data from the site has been recorded from May 2010 onwards. As the station is relatively new, the post fire instrumentation is currently not as diverse when compared to the pre-fire instrumentation. The climate of the study area is classified as a cool, temperate zone, with the highest temperatures occurring during the summer months of December – February (13.8 – 22.5°C), whilst the coolest temperatures are experienced in May and August (4.7 – 9.2°C). Average annual precipitation is 1209mm, with a maximum rainfall occurring in June (Ashton, 2000). The study site experiences foggy conditions after sunset during autumn and winter.<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> Located in a 5 square kilometre block of relatively uniform open-forest savanna, the site is representative of high rainfall, frequently burnt tropical savanna. <br /><br />Tropical savanna in Australia occupies 1.9 million square km across the north and given the extent of this biome, understanding biogeochemical cycles, impacts of fire on sequestration, vegetation and fauna is a national priority. In the NT, savanna ecosystems are largely intact in terms of tree cover, with only modest levels of land use change. Despite this, there is evidence of a loss of biodiversity, most likely due to shifts in fire regimes and a loss of patchiness in the landscape. Approximately 40% of the savanna burn every year and understanding fire impacts on fauna and flora is essential for effective land management. <br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /><br /> The site is woodland savanna with an overstory co-dominated by tree species <em>E. tetrodonta</em>, <em>C. latifolia</em>, <em>Terminalia grandiflora</em>, <em>Sorghum sp.</em> and <em>Heteropogon triticeus</em>. Average canopy height measures 16.4 m. <br />Elevation of the site is close to 110m and mean annual precipitation at a nearby Bureau of Meteorology site is 1170mm. Maximum temperatures range from 37.5°C (in October) to 31.2°C (in June), while minimum temperatures range from 12.6°C (in July) to 23.8°C (in January). Maximum temperatures range seasonally by 6.3°C and minimum temperatures by 11.2°C. <br /><br />The instrument mast is 23 meters tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy.<br />Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008. <br /><br />

  • Categories    

    This dataset includes upper and lower thermal limits, voluntary exposure to extreme cold and warm temperatures, ATP levels, and longevity of <i>Acyrtociphom pisum</i> and <i>Hippodamia convergens</i>. Pathogens can modify many aspects of host behavior or physiology, with cascading impacts across trophic levels in terrestrial food webs. These changes include thermal tolerance of hosts, however, the effects of fungal infections on thermal tolerances and behavioral responses to extreme temperatures of prey (<i>Acyrtociphon pisum</i>) and predator (<i>Hippodamia convergens</i>) insect species have rarely been studied. We measured the impacts of fungal infection (at two levels: low and high spore load) on thermal tolerance (critical thermal maximum and minimum), voluntary exposure, energetic cost, and survival of both insect species. Fungal infection reduced thermal tolerance to heat in both insect species, but only reduced tolerance to cold of the predator. Voluntary exposure to extreme temperatures was modified by the infection, energetic cost increased with infection and thermal conditions, and survival was significantly reduced in both insect species.