Keyword

thickness of rainfall amount

294 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
From 1 - 10 / 294
  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Wombat State Forest site is a secondary re-growth forest that was last harvested in 1980. Dominant tree species are <em>Eucalyptus obliqua</em> (messmate stringybark), <em>Eucalyptus radiata</em> (narrow leaf peppermint) and <em>Eucalyptus rubida</em> (candlebark) with an average canopy height of 25&nbsp;m. The understorey consists mainly of patchy grasses and the soil is a silty-clay overlying clay. The forest is managed by the Department of Sustainability and Environment and management includes selective harvesting and prescribed burning regimes. The climate of the study area is classified as cool-temperate to Mediterranean with cold and wet winters (May-August) and warm and dry summers (December-February) with temperatures between 1 and 30&nbsp;°C and mean annual air temperature of 12.1&nbsp;°C. Annual rainfall is approximately 871&nbsp;mm (142 year long-term average). Coherent automated measurements of soil greenhouse gas fluxes (CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O) were collected using a trailer-mounted mobile laboratory - Fourier transform infra-red (FTIR) spectrometer from 2010 to 2016. Measurement height was originally 30&nbsp;m but increased to 33&nbsp;m in January 2017.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The forest is classed as a tall, wet sclerophyll forest, and the dominant <em>Eucalyptus Regnans</em> or mountain ash trees have an average canopy height of 75&nbsp;m. The site contains a chronosequence of (20, 80 and 300) stand ages that were established during fires occurring over the last 300 years. The area is assigned the IUCN Category II (National Parks) of the United Nations’ list of National Parks and protected areas, which means the park is primarily managed for ecosystem conservation. The catchment area is dominated by mountain ash, the world’s tallest flowering plant (angiosperm). Trees can reach heights of more than 90&nbsp;m in areas with high rainfall and fertile soil. Mountain ash forests are confined to the cool mountain regions with elevations ranging from 460 to 1100&nbsp;m and average rainfalls of 1100 to 2000&nbsp;mm/y. These trees are well distributed throughout Victoria’s Central Highlands including the Otway Ranges and Strzlecki Ranges; they are also found in Tasmania. The catchment area contains a portion of the Mt. Disappointment range, the Divide and the headwaters of Wallaby Creek and Silver Creek, and much of the slopes are characterised as flat to moderate.</br> <br>The station itself is located within an old growth stand with individual trees as old as 300 years. Below the dominant canopy lies a temperate rainforest understorey consisting of <em>Pomaderris aspera</em> and <em>Olearia argophylla</em> species, which are 10 to 18&nbsp;m tall. The lower layers of vegetation are dominated by tree ferns (<em>Cyathea australis</em> and <em>Dicksonia antartica</em>) and extensive tracts of rosette and rhizonic ferns (<em>Polystichum proliferum</em> and <em>Blechnum wattsii</em>) as well as acacia trees. The elevation is approximately 720&nbsp;m. The major soil type within the forest is krasnozemic soils, which are friable red/brown soils, with high amounts of organic matter in the upper 20 to 30&nbsp;cm. However, the composition of krasnozemic soils is not homogenous, but rather varies with altitude. Grey-yellow podsolised soils can be found at lower altitudes, while krasnozemic loams is characteristic of the higher altitudes of the Kinglake and of the Hume Plateau. The clay content of these soils increases with depth until at least 200&nbsp;cm deep, where after a transition soils contain rock fragments. The climate of the study area is classified as a cool, temperate zone, with the highest temperatures occurring during the summer months of December – February (13.8 to 22.5&nbsp;°C), whilst the coolest temperatures are experienced in May and August (4.7 to 9.2&nbsp;°C). Average annual precipitation is 1209&nbsp;mm, with a maximum rainfall occurring in June (Ashton, 2000). The study site experiences foggy conditions after sunset during autumn and winter.</br> <br>The original station had a main mast at 110&nbsp;m. This station was destroyed in February 2009 by bushfires. A replacement station was established in March 2010 and started recording in May 2010. The mast sat at a height of 5&nbsp;m. The post-fire instrumentation was not as diverse as the pre-fire instrumentation.</br>

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /><br /> The site is woodland savanna with an overstory co-dominated by tree species <em>E. tetrodonta</em>, <em>C. latifolia</em>, <em>Terminalia grandiflora</em>, <em>Sorghum sp.</em> and <em>Heteropogon triticeus</em>. Average canopy height measures 16.4 m. <br />Elevation of the site is close to 110m and mean annual precipitation at a nearby Bureau of Meteorology site is 1170mm. Maximum temperatures range from 37.5°C (in October) to 31.2°C (in June), while minimum temperatures range from 12.6°C (in July) to 23.8°C (in January). Maximum temperatures range seasonally by 6.3°C and minimum temperatures by 11.2°C. <br /><br />The instrument mast is 23 meters tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy.<br />Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008. <br /><br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The site is situated within a wetland that flooded seasonally. The principal vegetation is <em>Oryza rufipogon</em>, <em>Pseudoraphis spinescens</em> and <em>Eleocharis dulcis</em>. The elevation is approximately 4&nbsp;m, with a neighbouring Bureau of Meteorology station recording 1411&nbsp;mm mean annual precipitation. Maximum temperatures range from 31.3&nbsp;°C (in June and July) to 35.6&nbsp;°C (in October), while minimum temperatures range from 14.9&nbsp;°C (in July) to 23.9&nbsp;°C (in December and February). Maximum temperatures vary on a seasonal basis by approximately 4.3&nbsp;°C and minimum temperatures by 9.0&nbsp;°C.<br /><br /> The instrument mast is 15&nbsp;m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry. Ancillary measurements being taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, nitrogen and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne-based remote sensing (Lidar and hyperspectral measurements) was carried out across the site in September 2008.

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.15) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> Fletcherview Tropical Rangeland SuperSite was established in 2021 at James Cook University’s Fletcherview Research Station, a fully operational outback cattle station located 50&nbsp;km west of Townsville, Queensland. The site is used for cattle grazing and is characterised by tall open savanna. The vegetation is dominated by native grasses such as blackspear and kangaroo grasses, as well as introduced species like buffel grass, signal grass and leucaena. Fletcherview typically experiences a dry and wet season, with most rainfall occurring between January and April.<br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).<br /> <br /> The site is classified as an open woodland savanna. The overstory is co-dominated by tree species <em>Eucalyptus miniata</em> and <em>Eucalyptus tentrodonata</em>, and average tree height is 14-16&nbsp;m. Elevation of the site is close to 64&nbsp;m and mean annual precipitation is 1750&nbsp;mm. Maximum temperatures range from 30.4&nbsp;°C (in July) to 33.2&nbsp;°C (in November), while minimum temperatures range from 19.3&nbsp;°C (in July) to 25.4&nbsp;°C (in November). Therefore, the maximum and minimum range varies from 7&nbsp;°C (wet season) to 11&nbsp;°C (dry season).<br /><br /> The instrument mast is 23&nbsp;m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.<br /><br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The ecosystem was dominated by <em>Eucalyptus tectifica</em> and <em>Planchonia careya</em>.</br> <br>Elevation of the site was close to 90&nbsp;m and mean annual precipitation at a nearby Bureau of Meteorology site was 1730&nbsp;mm. Maximum temperatures ranged from 31.4&nbsp;°C (in June) to 36.8&nbsp;°C (in October) while minimum temperatures range from 16.2&nbsp;°C (in July) to 25.1&nbsp;°C (in December). Maximum temperature varied seasonally by approximately 5.4&nbsp;°C and minimum temperatures varied by approximately 8.9&nbsp;°C. The instrument mast was 15&nbsp;m tall. Heat, water vapour and carbon dioxide measurements were taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation were measured above the canopy. Soil heat fluxes are measured and soil moisture content was gathered using time domain reflectometry.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The site is located on a low lying plain dominated by Mitchell Grass (<em>Astrebla</em> spp.). Elevation of the site is close to 250&nbsp;m and mean annual precipitation at a nearby Bureau of Meteorology site is 640&nbsp;mm. Maximum temperatures range from 28.4&nbsp;°C (in June/ July) to 39.1&nbsp;°C (in December), while minimum temperatures range from 11.2&nbsp;°C (in July) to 24.4&nbsp;°C (in December).</br> <br>The instrument mast is 5&nbsp;m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall and net radiation are measured. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry.</br> <br>Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, nitrogen and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out at the site in September 2008. Biomass harvest measured: mean live biomass 0.00&nbsp;gm<sup>-2</sup> (standard error: 0.00), mean standing dead biomass 163.42&nbsp;gm<sup>-2</sup> (standard error: 16.73), mean litter biomass 148.99&nbsp;gm<sup>-2</sup> (standard error: 21.32), total mean biomass 312.40&nbsp;gm<sup>-2</sup> (standard error: 30.80). Soil consists of: clay 14.47%, silt 51.23%, sand 34.30%.</br>

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The flux station was established in August 2011 while the site supported tropical savanna. The site was part of a deforestation experiment measuring greenhouse gas exchange during conversion of forest to farmland. The land was being cultivated for watermelon production from 2013.<br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> Located in a 5 square kilometre block of relatively uniform open-forest savanna, the site is representative of high rainfall, frequently burnt tropical savanna. <br /><br />Tropical savanna in Australia occupies 1.9 million square km across the north and given the extent of this biome, understanding biogeochemical cycles, impacts of fire on sequestration, vegetation and fauna is a national priority. In the NT, savanna ecosystems are largely intact in terms of tree cover, with only modest levels of land use change. Despite this, there is evidence of a loss of biodiversity, most likely due to shifts in fire regimes and a loss of patchiness in the landscape. Approximately 40% of the savanna burn every year and understanding fire impacts on fauna and flora is essential for effective land management. <br /><br />