From 1 - 10 / 17
  • Categories    

    This is Version 2 of the Australian Total Soil Nitrogen product of the Soil and Landscape Grid of Australia.<br></br> It supersedes the Release 1 product that can be found at https://doi.org/10.4225/08/546F564AE11F9<br></br> The map gives a modelled estimate of the spatial distribution of total nitrogen in soils across Australia.<br></br> The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5&nbsp;cm, 5-15&nbsp;cm, 15-30&nbsp;cm, 30-60&nbsp;cm, 60-100&nbsp;cm and 100-200&nbsp;cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90&nbsp;m pixels). An additional measure of model reliability is through assessment of model extrapolation risk. This measure provides users a spatial depiction where model estimates are made within the domain of the observed data or not.<br></br> Detailed information about the Soil and Landscape Grid of Australia can be found at - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html">SLGA</a><br /><br /> <ul style="list-style-type: disc;"><li>Attribute Definition: Total soil nitrogen;</li> <li>Units: % (percentage of fine soil mass);</li> <li>Period (temporal coverage; approximately): 1950-2021;</li> <li>Spatial resolution: 3 arc seconds (approx 90&nbsp;m);</li> <li>Total number of gridded maps for this attribute: 24;</li> <li>Number of pixels with coverage per layer: 2007M (49200 * 40800);</li> <li>Data license : Creative Commons Attribution 4.0 (CC BY);</li> <li>Target data standard: GlobalSoilMap specifications;</li> <li>Format: Cloud Optimised GeoTIFF;</li></ul>

  • Categories    

    This data contains soil physico-chemical characteristics collected at 33 one hectare plots in the Karawatha Peri-Urban site in 2007.

  • Categories    

    This data contains soil physico-chemical characteristics collected at the Daintree Rainforest, Cape Tribulation site between 2007 - 2015.

  • Categories    

    This data contains soil physico-chemical characteristics collected at the Robson Creek Rainforest site between 2011 - 2014.

  • Categories    

    Leaf traits for 101 populations of <i>Dodonaea viscosa subsp. angustissima </i>(Sapindaceae) opportunistically collected across a ~1,000 km latitudinal north-south sequence with climates grading from the arid zone to the mesic Mediterranean zone. Additionally, we present leaf traits for 266 individuals on an attitudinal gradient in the Mt Lofty Ranges, South Australia. Traits measured include leaf area and specific leaf area, as well as climatic variables associated with the collection sites. <p>Leaf area is known to be responsive to climatic conditions. This data could be combined with additional collections for Dodonaea viscosa or broader plant trait data sets to explore pant responses to environmental change.</p>

  • Categories    

    The forest fuel survey dataset comprises site-level summary data from the well-designed fuel load surveys across 48 AusPlots Forests- 1-ha monitoring plots across Australia. Data presented here includes data on the surface, near-surface, and elevated fuel loads for each of the Forest Ausplots. It includes iButton data on 1) temperature and humidity, 2) data on litterfall and 3) decomposition rates. We also provide additional information on soil nutrient data, species composition of the understorey and midstorey, and panorama photos from the plot centre. This dataset is the second version of the <i> AusPlots Forest Fuel Survey site-level data summary, 2014 - 2015. Version 1.0.0. Terrestrial Ecosystem Research Network.</i> (dataset). <em>https://doi.org/10.25901/efnh-sk06</em>

  • Categories    

    This data contains soil physico-chemical characteristics collected at the Samford Peri-Urban site in 2013.

  • Categories    

    Plant material decomposition in soil was investigated using two types of tea bags (Green and Rooibos) buried to 8 cm for 80-90 days across seven TERN Ecosystem Process monitoring sites between 2016 - 2017. The sites included: Great Western Woodlands, Robson Creek Rainforest, Samford Peri-Urban, Cumberland Plain, Cape Tribulation, Warra Tall Eucalypt and Tumbarumba Wet Eucalypt sites. Weight loss of tea bags was determined and contextual data collected.

  • Categories    

    The data set contains information on plant diversity indices, species composition, vegetation cover and edaphic properties from the <i>Eucalyptus salubris</i> woodlands, Great Western Woodlands site. The data represents changes in plant diversity due to disturbance with time since fire in a chronosequence.

  • Categories    

    The dataset accompanies the paper by Zemunik et al. (2016), which used the Jurien Bay dune chronosequence to investigate the changes in the plant community diversity and turnover in response to long-term soil development. The Jurien Bay chronosequence is located in the Southwest Australian biodiversity hotspot, in an area with an extremely rich regional flora. The dataset consists of both flora and soil data that allows all analyses presented in the paper (Zemunik et al. 2016) to be independently investigated. The dataset is an update to that previously supplied for a prior study (Zemunik et al. 2015; DOI 10.4227/05/551A3DDE8BAF8). The study used a randomised stratified design, stratifying the dune system of the chronosequence into six stages, the first three spanning the Holocene (to ~6.5 ka) and oldest spanning soil development from the Early to Middle Pleistocene (to ~2 Ma). Floristic surveys were conducted in 60 permanent 10 m × 10 m plots (10 plots in each of six chronosequence stages). Each plot was surveyed at least once between August 2011 and March 2012, and September 2012. To estimate canopy cover and number of individuals for each plant species within the 10 m × 10 m plots, seven randomly-located 2 m × 2 m subplots were surveyed within each plot. Within each subplot, all vascular plant species were identified, the corresponding number of individuals was counted and the vertically projected vegetation canopy cover was estimated. Surface (0-20 cm) soil from each of the 420 subplots was collected, air dried and analysed at the Smithsonian Tropical Research Institute in Panama, for a range of chemical and physical properties: total and resin soil phosphorus; total nitrogen and dissolved organic nitrogen; soil total and organic carbon; exchangeable calcium (Ca), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn) and sodium (Na); Mehlich-III extractable iron, magnesium, copper (Cu) and zinc (Zn); and pH (measured in H20 and CaCl2). Nutrient-acquisition strategies were determined from the literature, where known, and from mycorrhizal analyses of root samples from species with poorly known strategies. Most of the currently known nutrient-acqusition strategies were found in the species of the chronosequence. Previous studies in the Jurien Bay chronosequence have established that its soil development conforms to models of long-term soil development first presented by Walker and Syers (1976); the youngest soils are N-limiting and the oldest are P-limiting (Laliberté et al. 2012). However, filtering of the regional flora by high soil pH on the youngest soils has the strongest effect on local plant species diversity (Laliberté et al. 2014). The update involved modification to species names due to taxonomic changes and the inclusion of additional soil analyses, not present in Zemunik et al. (2015). The additional soil variables (additional to DOI 10.4227/05/551A3DDE8BAF8) were exchangeable Ca, K, Al, Mg, Mn and Na, measured for all 420 subplots; and Cu, Fe, Mn and Zn, extracted in Mehlich III solution, for each of the 60 plots. References Laliberté, E., Turner, B.L., Costes, T., Pearse, S.J., Wyrwoll, K.H., Zemunik, G. & Lambers, H. (2012) Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot. Journal of Ecology, 100, 631-642. Walker, T.W. & Syers, J.K. (1976) The fate of phosphorus during pedogenesis. Geoderma, 15, 1-19. Zemunik, G., Turner, B.L., Lambers, H. & Laliberté, E. (2015) Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nature Plants 1, Article number: 15050, 1-4. Zemunik, G., Turner, B.L., Lambers, H. & Laliberté, E. (2016) Increasing plant species diversity and extreme species turnover accompany declining soil fertility along a long-term chronosequence in a biodiversity hotspot. Journal of Ecology.