Keyword

INCOMING SOLAR RADIATION

218 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
From 1 - 10 / 218
  • Categories    

    Dynamically downscaled high-resolution (~10 km spatial resolution) climate change projection data for Queensland. Downscaling was completed using CSIRO Conformal Cubic Atmospheric Model (CCAM) for two RCPs (RCP4.5 and RCP8.5) from 11 CMIP5 global coarse resolution models for period 1980-2099. The Queensland Future Climate Dashboard (www.longpaddock.qld.gov.au/qld-future-climate/ ) provides easy access to climate projection for Queensland. The dashboard allows users to explore, visualize and download the latest high-resolution climate modelling data for specific regions, catchments, disaster areas, local government areas and grid squares. Underlying data is provided via TERN for easy access for each of 11 downscaled models. The Queensland Future Climate Dataset provides high resolution data for over 30 different metrics grouped in six climate themes: (i) Mean Climate; (ii) Heatwaves; (iii) Extreme Temperature Indices; (iv) Extreme Precipitation Indices; (v) Droughts; and (vi) Floods. In addition selected variables at daily and monthly intervals are also available.

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid Mulga woodland, using eddy covariance techniques. <br /> <br /> The Alice Springs Mulga flux station is located on Pine Hill cattle station, near Alice Springs in the Northern Territory. The woodland is characterized by the Acacia aneura canopy, which is 6.5m tall on average. Elevation of the site is 606m above sea level, and the terrain is flat. Mean annual precipitation at the nearby (45km distant) Bureau of Meteorology station is 305.9mm but ranges between 100mm in 2009 to 750mm in 2010. Predominant wind directions are from the southeast and east.The extent of the woodland is 11km to the east of the flux station and 16km to the south. The soil is red sandy clay (50:50 sand:clay) overlying a 49m deep water table. Pine Hill Station is a functioning cattle station that has been in operation for longer than 50 years.The instrument mast is 13.7m tall. Fluxes of heat, water vapour and carbon are measured using the open-path eddy covariance technique at 11.6m. Supplementary measurements above the canopy include temperature and humidity (11.6m), windspeed and wind direction (9.25m), downwelling and upwelling shortwave and longwave radiation (12.2m). Precipitation is monitored in a canopy gap (2.5m). Supplementary measurements within and below the canopy include barometric pressure (1m), wind speed (2m, 4.25m and 6.5m), and temperature and humidity (2m, 4.25m and 6m). Below ground soil measurements are made in bare soil, mulga, and understory habitats and include ground heat flux (0.08m), soil temperature (0.02m – 0.06m) and soil moisture (0 – 0.1m, 0.1 – 0.3m, 0.6 – 0.8m and 1.0 – 1.2m). Ancillary measurements include soil water and carbon fluxes, leaf water potential, leaf gas exchange, stem basal area, stem growth, litter production, leaf area index, stem hydraulic conductance, and carbon and water stable isotope ratios. The site was established in September 2010 in conjunction with the Woodforde River NGCRT Superscience Site and is managed by the University of Technology Sydney. <br />For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/alice-mulga-supersite/ <br /><br /> This data is also available at http://data.ozflux.org.au .

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> Located in a 5 square kilometre block of relatively uniform open-forest savanna, the site is representative of high rainfall, frequently burnt tropical savanna. <br /><br />Tropical savanna in Australia occupies 1.9 million square km across the north and given the extent of this biome, understanding biogeochemical cycles, impacts of fire on sequestration, vegetation and fauna is a national priority. In the NT, savanna ecosystems are largely intact in terms of tree cover, with only modest levels of land use change. Despite this, there is evidence of a loss of biodiversity, most likely due to shifts in fire regimes and a loss of patchiness in the landscape. Approximately 40% of the savanna burn every year and understanding fire impacts on fauna and flora is essential for effective land management. <br /><br />

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in open forest savanna using eddy covariance techniques.<br /><br /> The site is classified as open forest savanna. The overstory is co-dominated by tree species <em>E. tetrodonta</em>, <em>E. dichromophloia</em>, <em>C. terminalis</em>, <em>Sorghum intrans</em>, <em>S. plumosum</em>, <em>Themeda triandra</em> and <em>Chrysopogon fallax</em>, with canopy height averaging 12.3m. Elevation of the site is close to 175m and mean annual precipitation from a nearby Bureau of Meteorology site measures 895.3mm. Maximum temperatures range from 29.1°C (in June) to 37.6°C (in July), while minimum temperatures range from 14.6°C (in July) to 24.8°C (in November). Maximum temperatures vary seasonally by 8.5°C and minimum by 10.2°C. <br /><br /> The instrument mast is 15 meters tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation are measured above the canopy. Soil heat fluxes are measured and soil moisture content is gathered using time domain reflectometry. <br /> Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008. <br /><br />This data is also available at http://data.ozflux.org.au .

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in tropical woodland using eddy covariance techniques.<br /><br /> The site was situated within a wetland that flooded seasonally. The principle vegetation was <em>Oryza rufipogon</em>, <em>Pseudoraphis spinescens</em> and <em>Eleocharis dulcis</em>. The elevation was approximately 4m, with a neighbouring Bureau of Meteorology station recording 1411mm mean annual precipitation.Maximum temperatures ranged from 31.3°C (in June and July) to 35.6°C (in October), while minimum temperatures ranged from 14.9°C (in July) to 23.9°C (in December and February). Maximum temperatures varied on a seasonal basis by approximately 4.3°C and minimum temperatures by 9.0°C.<br /> <br /> The instrument mast was 15m tall. Heat, water vapour and carbon dioxide measurements are taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation were measured above the canopy. Soil heat fluxes were measured and soil moisture content was gathered using time domain reflectometry.<br /> Ancillary measurements taken at the site include LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008. <br /><br />This data is also available at http://data.ozflux.org.au .

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Tumbarumba flux station is located in Bago State Forest in south eastern New South Wales. It was established in 2000 and is managed by CSIRO Marine and Atmospheric Research. The forest is classified as wet sclerophyll, the dominant species is <em>Eucalyptus delegatensis</em>, and average tree height is 40&nbsp;m. Elevation of the site is 1200&nbsp;m and mean annual precipitation is 1000&nbsp;mm. Bago and Maragle State Forests are adjacent to the south west slopes of southern New South Wales and the 48,400&nbsp;ha of native forest have been managed for wood production for over 100 years. The instrument mast is 70&nbsp;m tall. Fluxes of heat, water vapour and carbon dioxide are measured using the open-path eddy flux technique. Supplementary measurements above the canopy include temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation. Profiles of temperature, humidity and CO<sub>2</sub> are measured at seven levels within the canopy. Soil moisture content is measured using time domain reflectometry. Soil heat fluxes and temperature are also measured. Hyper-spectral radiometric measurements are being used to determine canopy leaf-level properties.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Robson Creek site is part of the Far North Queensland (FNQ) Rainforest Site along with affiliated monitoring sites at Cape Tribulation (Daintree Rainforest Observatory) and Cow Bay (Daintree Discovery Centre). The flux station is located at the foothills of the Lamb Range, part of the Wet Tropics World Heritage Area, and north-west of a 25&nbsp;ha census plot established by CSIRO in 2012.</br> <br>The forest is classified as Regional Ecosystem (RE) 7.3.36a, complex mesophyll vine forest (Queensland Government, 2006). There are 211 species in the adjacent 25&nbsp;ha plot, and average tree height is 28&nbsp;m, ranging from 23 to 44&nbsp;m. Elevation of the site is 711&nbsp;m and mean annual precipitation is 2000&nbsp;mm. The upland rainforests of the Atherton Tablelands are some of the most biodiverse and carbon dense forests in Australia. The landform of the 25&nbsp;ha plot which is in the dominant wind direction from the station is moderately inclined with a low relief, a 30&nbsp;m high ridge running north/south through the middle of the plot and a 40&nbsp;m high ridge running north/south on the eastern edge of the plot.</br> <br>The instruments are mounted on a free standing station at 40&nbsp;m. Fluxes of heat, water vapour and carbon dioxide are measured using the open-path eddy flux technique. Supplementary measurements above the canopy include temperature, humidity, windspeed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation.</br> <br>Note: Level 3 data for 2015 - 2018 were updated in 2018 correcting a rainfall issue in 2015 and a wind direction issue 2016 - 2018. A data gap from 2019-02-14 to 2019-02-21 was due to a major power supply failure.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br /> The flux station was established in August 2011 while the site supported tropical savanna. The site was part of a deforestation experiment measuring greenhouse gas exchange during conversion of forest to farmland. The land was being cultivated for watermelon production from 2013.<br /><br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Wombat State Forest site is a secondary re-growth forest that was last harvested in 1980. Dominant tree species are <em>Eucalyptus obliqua</em> (messmate stringybark), <em>Eucalyptus radiata</em> (narrow leaf peppermint) and <em>Eucalyptus rubida</em> (candlebark) with an average canopy height of 25&nbsp;m. The understorey consists mainly of patchy grasses and the soil is a silty-clay overlying clay. The forest is managed by the Department of Sustainability and Environment and management includes selective harvesting and prescribed burning regimes. The climate of the study area is classified as cool-temperate to Mediterranean with cold and wet winters (May-August) and warm and dry summers (December-February) with temperatures between 1 and 30&nbsp;°C and mean annual air temperature of 12.1&nbsp;°C. Annual rainfall is approximately 871&nbsp;mm (142 year long-term average). Coherent automated measurements of soil greenhouse gas fluxes (CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O) were collected using a trailer-mounted mobile laboratory - Fourier transform infra-red (FTIR) spectrometer from 2010 to 2016. Measurement height was originally 30&nbsp;m but increased to 33&nbsp;m in January 2017.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). <br /> <br /> Located in a 5 km<sup>2</sup> block of relatively uniform open-forest savanna, the site is representative of high rainfall, frequently burnt tropical savanna. <br /><br /> Tropical savanna in Australia occupies 1.9 million km<sup>2</sup> across the north and given the extent of this biome, understanding biogeochemical cycles, impacts of fire on sequestration, vegetation and fauna is a national priority. In the NT, savanna ecosystems are largely intact in terms of tree cover, with only modest levels of land use change. Despite this, there is evidence of a loss of biodiversity, most likely due to shifts in fire regimes and a loss of patchiness in the landscape. Approximately 40 % of the savanna burn every year and understanding fire impacts on fauna and flora is essential for effective land management. <br /><br />