From 1 - 10 / 49
  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Arcturus greenhouse gas (GHG) monitoring station was established in July 2010, 48 km southeast of Emerald, Queensland, with flux tower measurements starting in June 2011 until early 2014. The station was part of a collaborative project between Geoscience Australia (GA) and CSIRO Marine and Atmospheric Research (CMAR). Elevation of the site was approximately 170m asl and mean annual precipitation was 572mm. The tower bordered 2 land use types split N-S: To the west lightly forested tussock grasslands; To the east crop lands, cycling through fallow periods.The instruments were installed on a square lattice tower with an adjustable pulley lever system to raise and lower the instrument arm. The tower was 5.6m tall with the instrument mast extending a further 1.1m above, totalling a height of 6.7m. Fluxes of heat, water vapour, methane and carbon dioxide were measured using the open-path eddy flux technique. Supplementary measurements above the canopy included temperature, humidity, windspeed, wind direction, rainfall, and the 4 components of net radiation. Soil heat flux, soil moisture and soil temperature measurements were also collected. <br /> For additional site information, see http://www.ozflux.org.au/monitoringsites/arcturus/index.html.<br /><br />

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in dry sclerophyll forest at Cumberland Plain using eddy covariance techniques. The eddy covariance data collected in 2012-2013 includes measurements of turbulent fluxes but not the storage flux of CO2, and the micrometeorological data does not include soil moisture or soil temperature recordings. Beginning in January, 2014, a canopy profile system was implemented, allowing for calculation of the storage term, which is added to the turbulent flux of CO2 to calculate the net ecosystem exchange accurately in records from 2014 onwards. Prior to 2014, the net ecosystem exchange includes only the turbulent flux, and no soil moisture or soil temperature data are available.<br /> <br /> The Cumberland Plain flux station is located in a dry sclerophyll forest. The Cumberland Plain Woodland is now an endangered ecological community that encompasses distinct groupings of plants growing on clayey soils. The canopy is dominated by <em>Eucalyptus moluccana</em> and <em>Eucalyptus fibrosa</em>, which host an expanding population of mistletoe. Average canopy height is 23m, the elevation of the site is 20m and mean annual precipitation is 800mm. <br /> <br />Fluxes of water vapour, carbon dioxide and heat are quantified with the open-path eddy flux technique from a 30 m tall mast. Additional measurements above the canopy include temperature, humidity, wind speed and direction, rainfall, incoming and reflected shortwave and longwave radiation and net, diffuse and direct radiation and the photochemical reflectance index. In addition, profiles of humidity and CO2 are measured at eight levels within the canopy, as well as measurements of soil moisture content, soil heat fluxes, soil temperature, and 10-hr fuel moisture dynamics. In addition, regular monitoring of understory species abundance, mistletoe infection, leaf area index and litterfall are also performed. <br />For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/cumberland-plain-supersite/ . <br /><br />This data is also available at http://data.ozflux.org.au .

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br> The Arcturus greenhouse gas (GHG) monitoring station was established in July 2010, 48 km southeast of Emerald, Queensland. Flux tower measurements were carried out from June 2011 to early 2014. The station was part of a collaborative project between Geoscience Australia (GA) and CSIRO Marine and Atmospheric Research (CMAR). The elevation of the site is approximately 170&nbsp;m asl and mean annual precipitation is 572&nbsp;mm. The tower bordered 2 land use types to the west lightly forested tussock grasslands; to the east crop lands, cycling through fallow periods. The instruments were installed on a square lattice tower with an adjustable pulley lever system to raise and lower the instrument arm. The tower was 5.6&nbsp;m tall with the instrument mast extending a further 1.1&nbsp;m above, totalling a height of 6.7&nbsp;m. Fluxes of heat, water vapour, methane and carbon dioxide were measured using the open-path eddy flux technique. Supplementary measurements above the canopy included temperature, humidity, windspeed, wind direction, rainfall, and the four components of net radiation. Soil heat flux, soil moisture and soil temperature measurements were also collected. <br />

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br><em>Eucalyptus obliqua</em> forests dominate the vegetation below 650&nbsp;m where they exist as fire-maintained communities. On fertile soils these forests attain mature heights in excess of 55&nbsp;m: the tallest <em>E. obliqua</em> reaches a height of 90&nbsp;m. The flux station is installed in a stand of tall, mixed-aged <em>E. obliqua</em> forest (77 and >250 years-old) with a rainforest understorey and a dense man-fern (<em>Dicksonia antarctica</em>) ground-layer, on a small flat of elevation 100&nbsp;m adjacent to the Huon River. The understorey vegetation progresses from wet sclerophyll (dominated by <em>Pomaderris apatala</em> and <em>Acacia dealbata</em>) to rainforest (dominated by <em>Nothofagus cunninghamii</em>, <em>Atherosperma moschatum</em>, <em>Eucryphia lucida</em> and <em>Phyllocladus aspleniifolius</em>) with increasing time intervals between fire events. The site supports prodigous quantities of coarse woody debris as is characteristic of these fire-maintained eucalypt forests on fertile sites in southern Tasmania. The soil at the flux site is derived from Permian mudstone and has a gradational profile with a dark brown organic clayey silt topsoil overlying a yellow brown clay. The climate is classified as temperate with a mild summer and no dry season. Mean annual precipitation is 1700&nbsp;mm with a relatively uniform seasonal distribution. Summer temperatures peak in January (8.4&nbsp;°C to 19.2&nbsp;°C) with winter temperatures reaching their lowest in July (2.6&nbsp;°C to 8.4&nbsp;°C).</br> <br>The instruments are mounted at the top of an 80&nbsp;m tall guyed steel lattice tower. Supplementary measurements above the canopy include temperature, humidity, windspeed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation. An open-path gas analyser (EC150) was replaced by a closed-path gas analyser (EC155) at the end of January 2015. Soil moisture content is measured using time domain reflectometry. Soil heat fluxes and temperature are also measured. Micro-meteorology (CO<sub>2</sub>, H<sub>2</sub>O, energy fluxes) and meteorology (temperature, humidity, wind speed and direction, rainfall) were measured from 2013 to late 2016, but the dataset is incomplete due to ongoing problems since changing the open-path IRGA to a closed path system (CPEC200) during 2015. Soil data (moisture, heat flux, temperature) are complete for the time period.</br>

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Otway flux station was located at Narrinda South in south west Victoria, Australia.The pasture was grazed by dairy cattle with average grass height of 0.1m. Annual average rainfall at the site was around 800mm and was only moderately seasonal. Mean daily temperature ranged from 25°C in February to 12°C in July. The flux station was situated on a 10m tower. Fluxes of heat, water vapour and carbon dioxide were measured using the open-path eddy covariance technique. Supplementary measurements included temperature, humidity, rainfall, total solar, photosynthetically active radiation (PAR) and net radiation. Soil temperature and heat flux were also measured. The Otway flux station was established in February 2007 on private land at Nirranda South and managed by CSIRO Marine and Atmospheric Research staff as part of the Cooperative Research Centre for Greenhouse Gas Technologies.<br />For additional site information, see http://www.ozflux.org.au/monitoringsites/otway/index.html . <br><br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Samford flux station is situated on an improved (<em>Paspalum dilatum</em>) pasture in the humid subtropical climatic region of coastal south-east Queensland. Located only 20&nbsp;km from the centre of Brisbane city, Samford Valley provides an ideal case study to examine the impact of urbanisation and land use change on ecosystem processes. The valley covers an area of some 82&nbsp;km<sup>2</sup> and is drained in the southern regions by the Samford creek, which extends some 13&nbsp;km to Samford Village and into the South Pine River. The Samford Valley is historically a rural area experiencing intense urbanisation, with the population increasing almost 50% in the 10 years to 2006 (Morton Bay Regional Council, 2011). Within the Samford valley study region, the Samford Ecological Research Facility (SERF) not only represents a microcosm of current and historical land uses in the valley, but provides a unique opportunity to intensively study various aspects of ecosystem health in a secure, integrated and long term research capacity. Mean annual minimum and maximum temperatures at a nearby Bureau of Meteorology site are 13.1&nbsp;°C and 25.6&nbsp;°C respectively while average rainfall is 1102&nbsp;mm.</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The flux station is located at Rosebank Station, approximately 11&nbsp;km south-east of Longreach in Queensland. The site is arid tussock grassland with a variety of grass species including <em>Astrebla lappacea</em> and <em>Astrebla squarrosa</em> over black vertosol soil that supports sheep and beef cattle grazing. Traditional owners at this site are the Iningai people.

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br> The Otway flux station was located at Narrinda South in south west Victoria, Australia.The pasture was grazed by dairy cattle with average grass height of 0.1&nbsp;m. Annual average rainfall at the site was around 800&nbsp;mm and was only moderately seasonal. Mean daily temperature ranged from 25&nbsp;°C in February to 12&nbsp;°C in July. The flux station was situated on a 10&nbsp;m tower. Fluxes of heat, water vapour and carbon dioxide were measured using the open-path eddy covariance technique. Supplementary measurements included temperature, humidity, rainfall, total solar, photosynthetically active radiation (PAR) and net radiation. Soil temperature and heat flux were also measured. The Otway flux station was established in February 2007 on private land at Nirranda South and managed by CSIRO Marine and Atmospheric Research staff as part of the Cooperative Research Centre for Greenhouse Gas Technologies.<br /> <br><br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br> The Arcturus greenhouse gas (GHG) monitoring station was established in July 2010, 48 km southeast of Emerald, Queensland. Flux tower measurements were carried out from June 2011 to early 2014. The station was part of a collaborative project between Geoscience Australia (GA) and CSIRO Marine and Atmospheric Research (CMAR). The elevation of the site is approximately 170&nbsp;m asl and mean annual precipitation is 572&nbsp;mm. The tower bordered 2 land use types to the west lightly forested tussock grasslands; to the east crop lands, cycling through fallow periods. The instruments were installed on a square lattice tower with an adjustable pulley lever system to raise and lower the instrument arm. The tower was 5.6&nbsp;m tall with the instrument mast extending a further 1.1&nbsp;m above, totalling a height of 6.7&nbsp;m. Fluxes of heat, water vapour, methane and carbon dioxide were measured using the open-path eddy flux technique. Supplementary measurements above the canopy included temperature, humidity, windspeed, wind direction, rainfall, and the four components of net radiation. Soil heat flux, soil moisture and soil temperature measurements were also collected. <br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The flux station is located at Rosebank Station, approximately 11 km south-east of Longreach in Queensland. The site is arid tussock grassland with a variety of grass species including <em>Astrebla lappacea</em> and <em>Astrebla squarrosa</em> over black vertosol soil that supports sheep and beef cattle grazing. Traditional owners at this site are the Iningai people. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/mitchell-grass-rangeland-supersite/ .<br /><br />