From 1 - 5 / 5
  • Categories      

    This dataset indicates the presence and persistence of water across New South Wales between 1988 and 2012. Water is one of the world’s most important resources as it’s critical for human consumption, agriculture, the persistence of flora and fauna species and other ecosystem services. Information about the spatial distribution and prevalence of water is necessary for a range of business, modelling, monitoring, risk assessment, and conservation activities. For example, one of the necessary steps in the NSW State-wide Landcover and Trees Study (SLATS), which monitors vegetation change and is used in the production of vegetation maps, involves removing non-vegetative features such as water bodies through water masking. Water count The water count product is based on water index and water masks for NSW (Danaher & Collett 2006), and represents the proportion of observations with water present across the Landsat time series as a fraction of total number of possible observations in the 25yr period (1 Jan 1988 to 31 Dec 2012). The product has two bands where band 1 is the number of times water was present across the time series, and band 2 is the count of unobscured (i.e. non-null) input pixels, or number of total observations for that pixel. Cloud, cloud-shadow, steep slopes and topographic shadow can obscure the ability to count water presence. Water Prevalence The water prevalence product is extracted from the water count product and provides a measure of the relative persistence of water in the landscape (e.g. from always present to rarely and never present). There are 12 classes representing the percentage of time a pixel has had water present out of the total number of observations for that pixel (i.e Band 1/Band 2 of the water count product). Water prevalence mapping provides information for multiple, wide-reaching applications. For example, distance to locations of persistent water bodies can be modelled as a contributing indicator of potential biodiversity refugia. Files align with Landsat paths and rows (see https://www.usgs.gov/core-science-systems/nli/landsat/landsat-tools), with files for water count denoted 'dd7' and water prevalence 'ddh'.

  • Categories    

    Invertebrates dominate the animal world in terms of abundance, diversity and biomass and play critical roles in maintaining ecosystem function. Despite their obvious importance, disproportionate research attention remains focused on vertebrates, with knowledge and understanding of invertebrate ecology still lacking. Due to their inherent advantages, usage of camera traps in ecology has risen dramatically over the last three decades, especially for research on mammals. However, few studies have used cameras to reliably detect fauna such as invertebrates or used cameras to examine specific aspects of invertebrate ecology. Twenty-four Reconyx PC800 HyperfireTM cameras were deployed on 7th July 2016 at Main Camp and left until 12th October 2016 (98 days, or 2352 h of deployment) in the Simpson Desert, south-western Queensland, capturing 372 time-lapse images of Wolf spiders (Family Lycosidae). Images were tagged with camera location, position, angle, camera ID and presence of lycosids. Additionally, spotlight surveys were conducted in October 2016 every hour between dusk (19:30 h) and dawn (05:30 h) over three nights with a total of 352 lycosids observed. This data set was used to determine whether: 1) camera traps provide a viable method for detecting wolf spiders, 2) diel activity patterns of the spiders can be ascertained, and 3) patterns in spider activity vary with environmental conditions, specifically between burned and unburned habitats and the crests and bases of sand dunes. This data presents a useful example of the utility of cameras as a tool for determining the diel activity patterns and habitat use of larger arthropods such as wolf spiders. Please note: Camera trap images are not provided and only species occurrence records are included. Also, image files were renamed after collection, resulting in a number versus time conflict. However, dates and times of sightings provided are correct.

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in a pastoral area using eddy covariance techniques.<br /><br /> The flux station is located within an area of dryland agriculture. The surrounding area is dominated by broadacre farming practices. The vegetation cover is predominantly pasture. Elevation of the site is close to 330 m. Climate information comes from the nearby Pingelly BoM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445 mm with highest rainfall in June and July of 81 mm each month. Maximumum and minuimum annual rainfall is 775 and 217 mm, respectively. Maximum temperatures range from 31.9°C (in Jan) to 15.4°C (in July), while minimum temperatures range from 5.5°C (in July) to 16.0 °C (in Feb).<br /><br />This data is also available at http://data.ozflux.org.au .

  • Categories    

    High quality digital images are captured using a digital SLR camera at the plots (core 1 hectare vegetation plot) at the TERN Warra Tall Eucalypt SuperSite using the panoramic photopoint method. The panoramic photopoint method may be the most informative in open forests/woodlands and rangelands. Three photopoints are established configured in an equilateral triangle (2.5m sides) with the centre marked with a star dropper and the location recorded with DGPS. At each photopoint take photographic sequences in a 360° panorama, with up to 40 photographs with a minimum 50% overlap between consecutive photographs. For more information about the method, see <a href= 'http://dx.doi.org/10.13140/2.1.4287.3607'>White, el al. (2012) AusPlots Rangelands Survey Protocols Manual Version 1.2.9.</a> <br> The Warra Tall Eucalypt SuperSite was established in 2012 and is located in a stand of tall, mixed-aged <em>Eucalyptus obliqua</em> forest (1.5, 77 and &gt;250 years-old) with a rainforest / wet sclerophyll understorey and a dense man-fern (<em>Dicksonia antarctica</em>) ground-layer. The site experienced a fire in January 2019, which consumed the ground layer and killed a high proportion of the understorey trees but stimulated dense seedling regeneration. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/warra-tall-eucalypt-supersite/. <br /><br /> Other images collected at the site include digital hemispherical photography, phenocam time-lapse images taken from fixed under and overstorey cameras, five-photopoint images, and ancillary images of fauna and flora.

  • Categories    

    <p>The Biomass Plot Library is a collation of stem inventory data across federal, state and local government departments, universities, private companies and other agencies. It was motivated by the need for calibration/validation data to underpin national mapping of above-ground biomass from integration of Landsat time-series, ICESat/GLAS lidar, and ALOS PALSAR bacscatter data under the auspices of the JAXA Kyoto & Carbon (K&C) Initiative (Armston et al., 2016). At the time of Version 1.0 publication 1,073,837 hugs of 839,866 trees across 1,467 species had been collated. This has resulted from 16,391 visits to 12,663 sites across most of Australia's bioregions. Data provided for each project by the various source organisation were imported to a PostGIS database in their native form and then translated to a common set of tree, plot and site level observations with explicit plot footprints where available.</p> <p>Data can be downloaded from https://field.jrsrp.com/ by selecting the combinations Tree biomass and Site Level, Tree Biomass and Tree Level.</p>