From 1 - 10 / 23
  • Categories    

    Invertebrates dominate the animal world in terms of abundance, diversity and biomass and play critical roles in maintaining ecosystem function. Despite their obvious importance, disproportionate research attention remains focused on vertebrates, with knowledge and understanding of invertebrate ecology still lacking. Due to their inherent advantages, usage of camera traps in ecology has risen dramatically over the last three decades, especially for research on mammals. However, few studies have used cameras to reliably detect fauna such as invertebrates or used cameras to examine specific aspects of invertebrate ecology. Twenty-four Reconyx PC800 HyperfireTM cameras were deployed on 7th July 2016 at Main Camp and left until 12th October 2016 (98 days, or 2352 h of deployment) in the Simpson Desert, south-western Queensland, capturing 372 time-lapse images of Wolf spiders (Family Lycosidae). Images were tagged with camera location, position, angle, camera ID and presence of lycosids. Additionally, spotlight surveys were conducted in October 2016 every hour between dusk (19:30 h) and dawn (05:30 h) over three nights with a total of 352 lycosids observed. This data set was used to determine whether: 1) camera traps provide a viable method for detecting wolf spiders, 2) diel activity patterns of the spiders can be ascertained, and 3) patterns in spider activity vary with environmental conditions, specifically between burned and unburned habitats and the crests and bases of sand dunes. This data presents a useful example of the utility of cameras as a tool for determining the diel activity patterns and habitat use of larger arthropods such as wolf spiders. Please note: Camera trap images are not provided and only species occurrence records are included. Also, image files were renamed after collection, resulting in a number versus time conflict. However, dates and times of sightings provided are correct.

  • Categories    

    The lesser hairy­footed dunnart (<i>Sminthopsis youngsoni, Dasyuridae</i>) is a generalist marsupial insectivore in arid Australia, but consumes wolf spiders (<i>Lycosa spp., Lycosidae</i>) disproportionately often relative to their availability. This project tested the hypothesis that this disproportionate predation is a product of frequent encounter rates between the interactants due to high overlap in their diets and use of space and time. This data set focuses on overlap in the use of different microhabitats of wolf spiders (<i>Lycosa spp.</i>) and the lesser hairy­footed dunnart (<i>Sminthopsis youngsoni</i>) in the Simpson Desert, south­western Queensland Australia. Microhabitat use was determined by estimating the percentage cover of seven microhabitat variables and distance to nearest cover along trails left by individuals of each species­ group and a randomly orientated (control) trail for each actual trail as a measure of the availability of each microhabitat within the local environment. Trail length was also recorded and data was collected across 16 trapping grids at Main Camp during July and October (winter and Spring) in 2017. Differences in microhabitat use between trail types (actual vs control) and species (lycosids vs dunnarts) were assessed using non­metric multidimensional scaling (NMDS) and permutational analyses of variance (PERMANOVA). These analyses were performed using this data.

  • Categories    

    The lesser hairy-footed dunnart (<i>Sminthopsis youngsoni, Dasyuridae</i>) is a generalist marsupial insectivore in arid Australia, but consumes wolf spiders (<i>Lycosa spp., Lycosidae</i>) disproportionately often relative to their availability. This project tested the hypothesis that this disproportionate predation is a product of frequent encounter rates between the interactants due to high overlap in their diets and use of space and time. This data set focuses on dietary overlap, with diet and predatory behaviour of wolf spiders (<i>Lycosa spp.</i>), the lesser hairy-footed dunnart (<i>Sminthopsis youngsoni</i>) and prowling spiders (<i>Miturga spp.</i>, which represent other common invertebrate predators) were determined by tracking individuals and directly observing prey captures. Seventeen wolf spiders, 10 prowling spiders and 5 dunnarts were captured from Main Camp site in the Simpson Desert, south-western Queensland during 2016 with 30, 13 and 13 direct prey captures witnessed for each species respectively. This data is used for calculating overlap between prey taxa and prey size between these predators using the symmetrical version of MacArthur and Levin's and Pianka's overlap equation. However, it can also be used as a case study for calculating overlap between other species-groups.

  • Categories  

    The lesser hairy-footed dunnart (<i>Sminthopsis youngsoni, Dasyuridae</i>) is a generalist marsupial insectivore in arid Australia, but consumes wolf spiders (<i>Lycosa spp., Lycosidae</i>) disproportionately often relative to their availability. This project tested the hypothesis that this disproportionate predation is a product of frequent encounter rates between the interactants due to high overlap in their diets and use of space and time. This data set focuses on overlap in the diel acttivity patterns wolf spiders (<i>Lycosa spp.</i>) and the lesser hairy-footed dunnart (<i>Sminthopsis youngsoni</i>) in the Simpson Desert, south-western Queensland Australia. To quantify the temporal activity of lycosids, spotlight surveys were conducted in October 2016 every hour between dusk (19:30 h) and dawn (05:30 h) over three nights. Additionally, remote camera traps were deployed to further quantify patterns in the activity of lycosids and S. youngsoni. Twenty-four Reconyx PC800 HyperfireTM cameras were deployed on 7th July 2016 at Main Camp and left until 12th October 2016 (98 days, or 2352 h of deployment). Images were tagged with camera location, position, angle, camera ID number, species and confidence and date and time data were extracted from each image. This data was used to identify mean activity times for each species (with confidence intervals) and to assess overlap in nocturnal activity patterns between lycosids and S. youngsoni, and thus the potential for competition and predation using the Overlap v 0.2.7 package in R. This data presents a useful example for investigating how the 'Overlap' package works and the benefits it provides.

  • Categories    

    The lesser hairy-footed dunnart (<i>Sminthopsis youngsoni, Dasyuridae</i>) is a generalist marsupial insectivore in arid Australia, but consumes wolf spiders (<i>Lycosa spp., Lycosidae</i>) disproportionately often relative to their availability. This project tested the hypothesis that this disproportionate predation is a product of frequent encounter rates between the interactants due to high overlap in their diets and use of space and time. This data set focuses on the dietary aspect. Specifically, invertebrate pitfall trapping was employed to quantify food availability and selectivity for both wolf spiders and <i>S.youngsoni</i>. Pitfall traps were deployed along trails left by tracked individuals, as well as control trails, of both species groups in the north-western Simpson Desert, Queensland. In total, invertebrate pitfall traps were deployed along 11 <i>S.youngsoni</i> and 8 <i>lycosa</i> trails in October 2016. Invertebrates were identified to the level of "Order", except for spiders (Order: Arachnida) and bees, wasps and ants (Order: Hymenoptera) which were identified to the "Family" level using identification keys and were also counted and grouped into seven size classes. This data was used for the following analyses: [1] a two-way analysis of variance (ANOVA) to test whether total numbers of arthropods differed between trail type and species, [2] non-metric multidimensional scaling (NMDS) and [3] permutational analysis of variance (PERMANOVA) to test whether assemblages of arthropod prey and prey sizes differed between the two trail types for each species and between each species.

  • Categories    

    Wood block decomposition assessment at theTumbarumba Wet Eucalypt site is part of a global program looking at the influence of microbes and invertebrates on wood decay. A common protocol was developed exposing small (~400 cm3) pieces of a wood-substrate (untreated Pinus radiata) to the environment excluding and not-excluding macroinvertebrates (e.g. termites) by the use of a plastic mesh.

  • Categories    

    Wood block decomposition assessment at the Great Western Woodlands site is part of a global program looking at the influence of microbes and invertebrates on wood decay. A common protocol was developed exposing small (~400 cm3) pieces of a wood-substrate (untreated Pinus radiata) to the environment excluding and not-excluding macroinvertebrates (e.g. termites) by the use of a plastic mesh.

  • Categories    

    In 1963, the Glen Canyon Dam, in Hite Utah was completed, creating the Lake Powell reservoir along the Colorado River. The water levels of Lake Powell peaked in 1983 and have declined since, releasing over-pressure on the underlying sediment. This release in over-pressure created mud volcanoes, structures along the shoreline made of cavities that allow fluid and gases to rise to the surface and escape. Green house gases including methane are released from these structures, and to better understand how development of natural wetlands can result in unintended increased levels of greenhouse gas emissions, we asked 1) how much of each gas is generated or and whether the amount of each gas is changing through time and 2) how are these gases forming in the subsurface? We first measured the amounts of carbon dioxide (CO2), methane (CH4), and air (N) in volcano gas samples collected in 2014, 2015, and 2016. We found that from 2014 through 2016, methane levels from these volcanoes fluctuated significantly. In 2016, we looked at the amounts of carbon and hydrogen isotopes in the methane, which told us the gas is generated from microorganisms feeding on organic matter and is released during water-level fluctuations. We looked at mud volcanoes only located along the Lake Powell marina delta in Hite, Utah. The data spans geological structures restricted to one marina delta.

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br /> The flux station is located within an area of dryland agriculture. The surrounding area is dominated by broadacre farming practices. The vegetation cover is predominantly pasture. Elevation of the site is close to 330&nbsp;m. Climate information comes from the nearby Pingelly BoM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445&nbsp;mm with highest rainfall in June and July of 81&nbsp;mm each month. Maximumum and minuimum annual rainfall is 775 and 217&nbsp;mm, respectively. Maximum temperatures range from 31.9&nbsp;°C (in Jan) to 15.4&nbsp;°C (in July), while minimum temperatures range from 5.5&nbsp;°C (in July) to 16.0&nbsp;°C (in Feb).<br /><br />

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in a pastoral area using eddy covariance techniques.<br /><br /> The flux station is located within an area of dryland agriculture. The surrounding area is dominated by broadacre farming practices. The vegetation cover is predominantly pasture. Elevation of the site is close to 330 m. Climate information comes from the nearby Pingelly BoM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445 mm with highest rainfall in June and July of 81 mm each month. Maximumum and minuimum annual rainfall is 775 and 217 mm, respectively. Maximum temperatures range from 31.9°C (in Jan) to 15.4°C (in July), while minimum temperatures range from 5.5°C (in July) to 16.0 °C (in Feb).<br /><br />This data is also available at http://data.ozflux.org.au .