Creation year

2011

34 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
From 1 - 10 / 34
  • Categories    

    The data set contains information on the soil water content at various depths in the Samford Ecological Research Facility (SERF), Samford Peri-Urban Site. Information on soil water content is provided from two sensors, i.e., 1) Sentek Solo, for high frequency sampling and 2) Sentek Diviner, for coarser resolution sampling.

  • Categories  

    The dataset accompanies the paper by Zemunik et al. (2016), which used the Jurien Bay dune chronosequence to investigate the changes in the plant community diversity and turnover in response to long-term soil development. The Jurien Bay chronosequence is located in the Southwest Australian biodiversity hotspot, in an area with an extremely rich regional flora. The dataset consists of both flora and soil data that allows all analyses presented in the paper (Zemunik et al. 2016) to be independently investigated. The dataset is an update to that previously supplied for a prior study (Zemunik et al. 2015; DOI 10.4227/05/551A3DDE8BAF8). The study used a randomised stratified design, stratifying the dune system of the chronosequence into six stages, the first three spanning the Holocene (to ~6.5 ka) and oldest spanning soil development from the Early to Middle Pleistocene (to ~2 Ma). Floristic surveys were conducted in 60 permanent 10 m × 10 m plots (10 plots in each of six chronosequence stages). Each plot was surveyed at least once between August 2011 and March 2012, and September 2012. To estimate canopy cover and number of individuals for each plant species within the 10 m × 10 m plots, seven randomly-located 2 m × 2 m subplots were surveyed within each plot. Within each subplot, all vascular plant species were identified, the corresponding number of individuals was counted and the vertically projected vegetation canopy cover was estimated. Surface (0-20 cm) soil from each of the 420 subplots was collected, air dried and analysed at the Smithsonian Tropical Research Institute in Panama, for a range of chemical and physical properties: total and resin soil phosphorus; total nitrogen and dissolved organic nitrogen; soil total and organic carbon; exchangeable calcium (Ca), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn) and sodium (Na); Mehlich-III extractable iron, magnesium, copper (Cu) and zinc (Zn); and pH (measured in H20 and CaCl2). Nutrient-acquisition strategies were determined from the literature, where known, and from mycorrhizal analyses of root samples from species with poorly known strategies. Most of the currently known nutrient-acqusition strategies were found in the species of the chronosequence. Previous studies in the Jurien Bay chronosequence have established that its soil development conforms to models of long-term soil development first presented by Walker and Syers (1976); the youngest soils are N-limiting and the oldest are P-limiting (Laliberté et al. 2012). However, filtering of the regional flora by high soil pH on the youngest soils has the strongest effect on local plant species diversity (Laliberté et al. 2014). The update involved modification to species names due to taxonomic changes and the inclusion of additional soil analyses, not present in Zemunik et al. (2015). The additional soil variables (additional to DOI 10.4227/05/551A3DDE8BAF8) were exchangeable Ca, K, Al, Mg, Mn and Na, measured for all 420 subplots; and Cu, Fe, Mn and Zn, extracted in Mehlich III solution, for each of the 60 plots. References Laliberté, E., Turner, B.L., Costes, T., Pearse, S.J., Wyrwoll, K.H., Zemunik, G. & Lambers, H. (2012) Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot. Journal of Ecology, 100, 631-642. Walker, T.W. & Syers, J.K. (1976) The fate of phosphorus during pedogenesis. Geoderma, 15, 1-19. Zemunik, G., Turner, B.L., Lambers, H. & Laliberté, E. (2015) Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nature Plants 1, Article number: 15050, 1-4. Zemunik, G., Turner, B.L., Lambers, H. & Laliberté, E. (2016) Increasing plant species diversity and extreme species turnover accompany declining soil fertility along a long-term chronosequence in a biodiversity hotspot. Journal of Ecology.

  • Categories    

    This dataset consists of counts of plants and seeds for the ephemeral desert herb <i>Trachymene glaucifolia</i> obtained from the Ethabuka and Carlo Reserves in the Simpson Desert, Australia, from 2004-2011 by the Desert Ecology Research Group (DERG) in conjunction with LTERN. It also consists of monthly rainfall data obtained from 1995-2012. Collectively, the dataset was used to construct Multivariate Auto-regressive State-Space (MARSS) models for the manuscript "Reducing common sources of uncertainty in time series population data using MARSS models". For more information see: DERG : https://www.desertecology.edu.au

  • Categories    

    The dataset provides information on the Specific Leaf Area (SLA) measurements of the species <i>Dodonaea viscosa</i> from the TERN AusPlots.

  • Categories    

    The record contains information on litterfall data collected from the dry sclerophyll forest, Samford Peri-Urban Site, South East Queensland from between 2011-2013. Data on plant litter weight, leaf carbon and nitrogen content are provided.

  • Categories    

    Field spectroradiometer measurements have been collected at several locations across Australia (formally known as the AusCover Supersites) to relate field based measurements to satellite data products, such as Landsat and MODIS NBAR products. Collected in collaboration with multiple government and research-based institutions.

  • Categories    

    This dataset consists of images of fauna, flora, fungi or general scenery or events captured at the site on an ad-hoc basis and may provide the researcher with information regarding the species that occupy, frequent or traverse this site.<br /> <br /> The Calperum Mallee SuperSite was established in 2011 and is located on Calperum Station with research plots located in mallee woodland (burnt in 2014), Callitris woodland and a river floodplain (recovering from extensive grazing), consisting of black box, river red gum and lignum. The core 1 ha plot is located in mallee woodland. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/calperum-mallee-supersite/ . <br /> Other images collected at the site include digital cover photography, phenocam time-lapse images taken from fixed under and overstorey cameras, panoramic landscape and photopoint images. <br /><br /> <iframe src="https://maps.google.com/maps?layer=c&amp;panoid=VNc5-dZcKkoAAAGuqlmVHw&amp;ie=UTF8&amp;source=embed&amp;output=svembed&amp;cbp=13%2C208.3252%2C%2C0%2C0" title="Photosphere view of the mallee at Calperum SuperSite (photo J. Armston 2014)" style="height:248px;width:462px;"></iframe> <br />Photosphere view of the mallee at Calperum SuperSite (photo J. Armston 2014)<br />

  • Categories    

    This data contains biomass from sub-tropical pasture vegetation within the Samford Peri-Urban Site between 2011 - 2013

  • Categories    

    The record is on the bird capture data from the Robson Creek Site in 2011. Data set contains information related to the bird capture details such as, the Australian Bird & Bat Banding Scheme (ABBBS) band number, field species identification, the Royal Australasian Ornithologists Union (RAOU) Species Number, age and sex of the bird. There are details of morphometric measurements such as weight, bill length, tarsus length, wing length, wing moult and tail moult. In addition information on re-capture, breeding status and blood collection details have been recorded.

  • Categories    

    Digital Cover Photography (DCP) upward-looking images are collected ideally twice per year (depending upon travel availability) to capture vegetation cover at Alice Mulga SuperSite. These images can be used to estimate Leaf area index (LAI), Crown Cover or Foliage Projective Cover (FPC). The Alice Mulga SuperSite was established in 2010 at Pine Hill Cattle Station with research plots located in low open woodland Mulga (<em>Acacia aneura</em>) and non-Acacia, hummock grassland, and river red gum forest. The core 1 ha plot is located in a dense Mulga woodland (cover 70–80%). For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/alice-mulga-supersite/ . Other images collected at the site include photopoints, phenocam time-lapse images taken from fixed under and overstorey cameras, panoramic landscape and ancillary images of fauna and flora.