From 1 - 3 / 3
  • Categories    

    The NSW Forest Monitoring Steering Committee commissioned the University of Melbourne to deliver baselines, drivers and trends for water quality and quantity in the NSW Regional Forest Agreement (RFA) regions. Following this work, the University of Melbourne was asked to extend the analysis to cover all NSW forested catchments. Both the initial project (RFA regions) and the extension (all NSW forested catchments) are included in this publication.<br> This dataset contains the estimated Mann-Kendall trends (direction and significance) in seven water quality and six water quantity indicators. The trends were estimated using a temporal regression that included a linear trend, the flow effect, a seasonality component and a lag-1 autoregressive residual model for which water quality data were sampled at daily or higher frequencies. For each water quality variable, trends were estimated for catchments which have 50% catchment area covered by forest, and long-term data monitored at the outlet of each catchment. All trends were estimated with the full historical records of each variable at each catchment in RFA regions, and the extension across all NSW forested catchments also produced short term trends. More detailed metadata for each dataset is included.<br> The seven quality indicators are: total phosphorus (TP), total nitrogen (TN), dissolved oxygen (DO), pH, electrical conductivity (EC), turbidity and water temperature (WTemp). <br> The six quantity indicators are: annual flow, annual rainfall-runoff residual, annual high flow, annual low flow, annual 7-day (7d) low flow and annual cease to flow (CTF).<br> Water monitoring sites analysed included those from the WaterNSW, Bureau of Meteorology, Water Data Online (BoM WDO) and Forestry Corporation NSW (FCNSW).<br> A web mapping application on the NSW Spatial Collaboration Portal depicts these datasets. Access the webapp through the link below: <br> https://portal.spatial.nsw.gov.au/portal/home/item.html?id=03950cf226ac4d459b8c8e3631e17afb

  • Categories  

    River sites were sampled during the summers of 2008/09 and 2009/10 in a survey designed to identify correlations between commonly used river condition variables and grazing land-use. Potential stream sites in northern Tasmania were screened by catchment size, northing and slope, and according to attributes aimed at minimising confounding variables, maintaining broad consistency in landscape and geomorphological context, and promoting independence among sites. A set of 27 survey sites was selected across a gradient from low to high proportion of land under grazing in their upstream catchments. Catchment sizes varied from 20-120 km2 and proportion grazing from 0-80%. Macroinvertebrates were sampled using Surber sampler. All macroinvertebrates within a 20% sub-sample identified to family and counted, with individuals from the insect orders Ephemeroptera, Plecoptera and Trichoptera identified to genus/species (by Laurie Cook, UTAS). Algal abundance was estimated at each site as the proportion of algal cover and as areal density of benthic chlorophyll a. Physical data variables collected were: water temperature, conductivity, turbidity, pH, total alkalinity, nitrate+nitrate, dissolved reactive phosphorus, total nitrogen, total phosphorus, overhead shading, the proportion of fine sediments within the sampled riffle zone, accumulated abstraction index and accumulated regulation index. For more information see: See Magierowski RH, Read SM, Carter SJB, Warfe DM, Cook LS, Lefroy EC and Davies PE. Inferring landscape-scale land-use impacts on rivers using data from mesocosm experiments and artificial neural networks. PLOS ONE.

  • Categories    

    This data set is the result of the investigation on the response of littoral and floodplain vegetation and soil moisture flux to weir pool raising in 2015. The data was collected over 18 months between August 2015 and December 2016- before, during and after the weir pool levels were raised. The data set contains information on Tree Condition including crown extent and density, bark form, epicormic growth and state, reproduction, crown growth, leaf die off and damage, and mistletoe. Leaf Water Potential, taken predawn and in the middle of the day. Plant Area Index/Canopy Cover measurements using hemispherical photos. Soil Chemistry measurements- total soil moisture (gravimetric water content; %), soil suction (or soil matric potential), Electrical Conductivity and soil pH.