From 1 - 4 / 4
  • Categories  

    The Victorian Alpine Plot Network vegetation data package contains vegetation data collected at a sub-set of the 481 long term monitoring plots which have been established in Australian Alps and in Tasmania. The sampling regime within the Victorian Network generally consists of multiple randomly positioned transects within sites, (rather than ‘plots’ sensu stricto), with each site, and/or transect geo-located. Point quadrats are taken at fixed intervals along each transect. The number of transects within sites, and sampling frequency varies from annual to decadal, depending on site and purpose. This general array of sampling transects, point quadrats along transects and floristic quadrats is consistent between grassland and snowpatch monitoring sites, although the number of transects and floristic quadrats needed to detect change in key variables (vegetation cover, bare ground, etc) at each site varies over time. There are also long-term monitoring sites in wetlands. This is part of a much larger dataset that spans from 1944, when plot were set up to document long-term changes in ecosystem composition and structure in relation to disturbance (see methods for more information). The Victorian Alpine Plot Network research plots are revisited on a 2-10 years basis. A synopsis of related data packages which have been collected as part of the Victorian Alpine Plot Network’s full program is provided at http://www.ltern.org.au/index.php/ltern-plot-networks/victorian-alpine

  • Categories  

    This package represents all data from surveys of vegetation within the Alpine Long Term Monitoring — Community Changes project. The surveys began in 1947, and the most recent is from 2013. As further surveys are conducted the new data will be added to this package. The Victorian Alpine Plot Network vegetation data package contains vegetation data collected at a sub-set of the 481 long term monitoring plots which have been established in Australian Alps and in Tasmania. The sampling regime within the Victorian Network generally consists of multiple randomly positioned transects within sites, (rather than ‘plots’ sensu stricto), with each site, and/or transect geo-located. Point quadrats are taken at fixed intervals along each transect. The number of transects within sites, and sampling frequency varies from annual to decadal, depending on site and purpose. This general array of sampling transects, point quadrats along transects and floristic quadrats is consistent between grassland and snowpatch monitoring sites, although the number of transects and floristic quadrats needed to detect change in key variables (vegetation cover, bare ground, etc) at each site varies over time. There are also long-term monitoring sites in wetlands. The Victorian Alpine Plot Network research plots are revisited on a 2–10 years basis. A synopsis of related data packages which have been collected as part of the Victorian Alpine Plot Network’s full program is provided at http://www.ltern.org.au/index.php/ltern-plot-networks/victorian-alpine

  • Categories    

    This data set is a compilation of biomass sampling of 15,054 individual measurements of 274 tree and shrub species across 826 sites in the Australian mainland, reported in 94 studies between 1950 and 2015. Various methods were used across sites, but all involved destructive harvests of individual trees or shrubs and measuring the fresh weight of above-ground biomass. Sub-sampling was used to determine moisture content, after which dry weight of the above-ground biomass was calculated. See publication for details: "Keryn I. Paul, John Larmour, Alison Specht, Ayalsew Zerihun, Peter Ritson, Stephen H. Roxburgh, Stan Sochacki, Tom Lewis, Craig V.M. Barton, Jacqueline R. England, Michael Battaglia, Anthony O'Grady, Elizabeth Pinkard, Grahame Applegate, Justin Jonson, Kim Brooksbank, Rob Sudmeyer, Dan Wildy, Kelvin D. Montagu, Matt Bradford, Don Butler, Trevor Hobbs, Testing the generality of below-ground biomass allometry across plant functional types, Forest Ecology and Management. 432: 102-114. https://doi.org/10.1016/j.foreco.2018.08.043. Paul, K.I., Larmour, J., Specht, A., Zerihun, A., Ritson, P., Roxburgh, S.H., Sochacki, S., Lewis, T., Barton, C.V.M., England, J.R., Battaglia, M., O’Grady, A., Pinkard, E., Applegate, G., Jonson, J., Brooksbank, K., Sudmeyer, R., Wildy, D., Montagu, K.D., Bradford, M., Butler, D., Hobbs, T., 2019. Testing the generality of below-ground biomass allometry across plant functional types. Forest Ecology and Management 432, 102–114. https://doi.org/10.1016/j.foreco.2018.08.043

  • Categories    

    This data set is a compilation of individual tree and shrub above-ground biomass (dry weight), stem diameter, height, and associated auxiliary information about the sites from which the trees or shrubs were sampled. The data were derived from numerous different projects over the last 5 decades. However, the project under which support was given to collate these datasets was Australia's Department of the Environments Methodology Development Program's Complex Wood System Project (MDP-CWS). The objective of the MDP-CWS project was to develop tools and information to underpin increased land manager participation in the domestic carbon market; the Emissions Reduction Fund (ERF). However, the intention is that this database will be expanded over time and have much greater use than just supporting carbon accounting methodologies. See publication for details: "Keryn I. Paul, John Larmour, Alison Specht, Ayalsew Zerihun, Peter Ritson, Stephen H. Roxburgh, Stan Sochacki, Tom Lewis, Craig V.M. Barton, Jacqueline R. England, Michael Battaglia, Anthony O'Grady, Elizabeth Pinkard, Grahame Applegate, Justin Jonson, Kim Brooksbank, Rob Sudmeyer, Dan Wildy, Kelvin D. Montagu, Matt Bradford, Don Butler, Trevor Hobbs, Testing the generality of below-ground biomass allometry across plant functional types, Forest Ecology and Management. 432: 102-114. https://doi.org/10.1016/j.foreco.2018.08.043. Paul, K.I., Larmour, J., Specht, A., Zerihun, A., Ritson, P., Roxburgh, S.H., Sochacki, S., Lewis, T., Barton, C.V.M., England, J.R., Battaglia, M., O’Grady, A., Pinkard, E., Applegate, G., Jonson, J., Brooksbank, K., Sudmeyer, R., Wildy, D., Montagu, K.D., Bradford, M., Butler, D., Hobbs, T., 2019. Testing the generality of below-ground biomass allometry across plant functional types. Forest Ecology and Management 432, 102–114. https://doi.org/10.1016/j.foreco.2018.08.043