Keyword

Milligram per Cubic Metre

95 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
From 1 - 10 / 95
  • Categories    

    These datasets consist of soil maps generated to assess baselines, drivers and trends for soil health and stability within the NSW Regional Forest Agreement (RFA) regions. <br> The maps are organised into empirical soil maps, digital soil maps, and data cube maps. <br> Empirical soil maps consists of four products. Maps include topsoil pH, carbon, Emerson Aggregate Stability and Soil Profile Quality Confidence. Each map consists of 2,162 units. Maps were generated using the most representative soil profile for each unit available within the Soil and Land Information System (SALIS). The 2008 woody vegetation coverage was used as baseline. Maps reflect values when the sampling occurred with temporal changes not being accounted for. Locations with missing or of poor quality data are identified, providing a confidence rating map as part of the evaluation process.<br> Digital soil maps include map products of key soil condition indicators covering the Regional Forest Agreement regions of eastern NSW. Raster maps of key soil indicators, such as soil carbon, pH, bulk density, hillslope erosion and others, were created at 100 m resolution. For each key soil indicator, maps include baseline (approximately 2008) levels as well as trends of change resulting from different human and natural disturbances such as forest harvesting, uncontrolled stock grazing, climate change and bush fire. <br> Data cube maps include time series of soil organic carbon (SOC) between January 1990 and December 2020 for the Regional Forest Agreement regions of eastern NSW. Products provide estimates of SOC concentrations and associated trends through time. Modelling was carried out using a data cube platform incorporating machine learning space-time framework and geospatial technologies. Important covariates required to drive this spatio-temporal modelling were identified using the Recursive Feature Elimination algorithm (RFE). <br> A web mapping application on the NSW Spatial Collaboration Portal depicts these datasets. Access the webapp through the link below:<br> https://portal.spatial.nsw.gov.au/portal/home/item.html?id=af9c71935f024f4a8f64cb39f5eba007

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid Mulga woodland, using eddy covariance techniques. <br /> <br /> The Alice Springs Mulga flux station is located on Pine Hill cattle station, near Alice Springs in the Northern Territory. The woodland is characterized by the Acacia aneura canopy, which is 6.5m tall on average. Elevation of the site is 606m above sea level, and the terrain is flat. Mean annual precipitation at the nearby (45km distant) Bureau of Meteorology station is 305.9mm but ranges between 100mm in 2009 to 750mm in 2010. Predominant wind directions are from the southeast and east.The extent of the woodland is 11km to the east of the flux station and 16km to the south. The soil is red sandy clay (50:50 sand:clay) overlying a 49m deep water table. Pine Hill Station is a functioning cattle station that has been in operation for longer than 50 years.The instrument mast is 13.7m tall. Fluxes of heat, water vapour and carbon are measured using the open-path eddy covariance technique at 11.6m. Supplementary measurements above the canopy include temperature and humidity (11.6m), windspeed and wind direction (9.25m), downwelling and upwelling shortwave and longwave radiation (12.2m). Precipitation is monitored in a canopy gap (2.5m). Supplementary measurements within and below the canopy include barometric pressure (1m), wind speed (2m, 4.25m and 6.5m), and temperature and humidity (2m, 4.25m and 6m). Below ground soil measurements are made in bare soil, mulga, and understory habitats and include ground heat flux (0.08m), soil temperature (0.02m – 0.06m) and soil moisture (0 – 0.1m, 0.1 – 0.3m, 0.6 – 0.8m and 1.0 – 1.2m). Ancillary measurements include soil water and carbon fluxes, leaf water potential, leaf gas exchange, stem basal area, stem growth, litter production, leaf area index, stem hydraulic conductance, and carbon and water stable isotope ratios. The site was established in September 2010 in conjunction with the Woodforde River NGCRT Superscience Site and is managed by the University of Technology Sydney. <br />For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/alice-mulga-supersite/ <br /><br /> This data is also available at http://data.ozflux.org.au .

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.1) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>.<br /> <br />The Alice Springs Mulga flux station is located on Pine Hill cattle station, near Alice Springs in the Northern Territory. The woodland is characterized by the Acacia aneura canopy, which is 6.5m tall on average. Elevation of the site is 606m above sea level, and the terrain is flat. Mean annual precipitation at the nearby (45km distant) Bureau of Meteorology station is 305.9mm but ranges between 100mm in 2009 to 750mm in 2010. Predominant wind directions are from the southeast and east.The extent of the woodland is 11km to the east of the flux station and 16km to the south. The soil is red sandy clay (50:50 sand:clay) overlying a 49m deep water table. Pine Hill Station is a functioning cattle station that has been in operation for longer than 50 years.The instrument mast is 13.7m tall. Fluxes of heat, water vapour and carbon are measured using the open-path eddy covariance technique at 11.6m. Supplementary measurements above the canopy include temperature and humidity (11.6m), windspeed and wind direction (9.25m), downwelling and upwelling shortwave and longwave radiation (12.2m). Precipitation is monitored in a canopy gap (2.5m). Supplementary measurements within and below the canopy include barometric pressure (1m), wind speed (2m, 4.25m and 6.5m), and temperature and humidity (2m, 4.25m and 6m). Below ground soil measurements are made in bare soil, mulga, and understory habitats and include ground heat flux (0.08m), soil temperature (0.02m – 0.06m) and soil moisture (0 – 0.1m, 0.1 – 0.3m, 0.6 – 0.8m and 1.0 – 1.2m). Ancillary measurements include soil water and carbon fluxes, leaf water potential, leaf gas exchange, stem basal area, stem growth, litter production, leaf area index, stem hydraulic conductance, and carbon and water stable isotope ratios. The site was established in September 2010 in conjunction with the Woodforde River NGCRT Superscience Site and is managed by the University of Technology Sydney.<br />For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/alice-mulga-supersite/ <br /><br />

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>.<br /> <br />The Alice Springs Mulga flux station is located on Pine Hill cattle station, near Alice Springs in the Northern Territory. The woodland is characterized by the Acacia aneura canopy, which is 6.5m tall on average. Elevation of the site is 606m above sea level, and the terrain is flat. Mean annual precipitation at the nearby (45km distant) Bureau of Meteorology station is 305.9mm but ranges between 100mm in 2009 to 750mm in 2010. Predominant wind directions are from the southeast and east.The extent of the woodland is 11km to the east of the flux station and 16km to the south. The soil is red sandy clay (50:50 sand:clay) overlying a 49m deep water table. Pine Hill Station is a functioning cattle station that has been in operation for longer than 50 years.The instrument mast is 13.7m tall. Fluxes of heat, water vapour and carbon are measured using the open-path eddy covariance technique at 11.6m. Supplementary measurements above the canopy include temperature and humidity (11.6m), windspeed and wind direction (9.25m), downwelling and upwelling shortwave and longwave radiation (12.2m). Precipitation is monitored in a canopy gap (2.5m). Supplementary measurements within and below the canopy include barometric pressure (1m), wind speed (2m, 4.25m and 6.5m), and temperature and humidity (2m, 4.25m and 6m). Below ground soil measurements are made in bare soil, mulga, and understory habitats and include ground heat flux (0.08m), soil temperature (0.02m – 0.06m) and soil moisture (0 – 0.1m, 0.1 – 0.3m, 0.6 – 0.8m and 1.0 – 1.2m). Ancillary measurements include soil water and carbon fluxes, leaf water potential, leaf gas exchange, stem basal area, stem growth, litter production, leaf area index, stem hydraulic conductance, and carbon and water stable isotope ratios. The site was established in September 2010 in conjunction with the Woodforde River NGCRT Superscience Site and is managed by the University of Technology Sydney.<br />For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/alice-mulga-supersite/ <br /><br />

  • Categories    

    This dataset consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in a farming area using eddy covariance techniques. The data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).<br/><br/>The Myall Vale B site is located on a privately owned irrigated field near Boggabri New South Wales. The terrain is flat and elevation of the site is close to 240 m above mean sea level.

  • Categories    

    This dataset consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in a farming area using eddy covariance techniques. The data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).<br><br/> The Myall Vale A site is located on a privately owned dryland field near Boggabri, New South Wales. The terrain is flat and elevation of the site is close to 240 meters above mean sea level.

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>The Aqueduct Snow Gum Flux station is part of the Australian Mountain Research Facility (AMRF), located at an elevation of 1616 meters asl, Kosciuszko National Park, NSW. The site is characterised by subalpine woodland vegetation dominated by <i>Eucalyptus pauciflora</i>. Long term climate of the site recorded by the Bureau of Meteorology, Perisher Valley AWS (station no. 071075) shows an annual mean of 11.1° C, with annual mean maximum of 12.2° C and annual mean minimum of 9.7° C</br>

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.1) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux</a>.<br /> <br />The Ti Tree East site was established in July 2012 and is managed by the University of Technology Sydney. Pine Hill Station is a functioning cattle station that has been in operation for longer than 50 years. However, the east side has not been stocked in over three years. The site is a mosaic of the primary semi-arid biomes of central Australia: grassy mulga woodland and Corymbia/Triodia savanna.The woodland is characterised by a mulga (Acacia aneura) canopy, which is 4.85 m tall on average. The soil is red sand overlying an 8 m deep water table. Elevation of the site is 553 m above sea level, and the terrain is flat. Mean annual precipitation at the nearby (30 km to the south) Bureau of Meteorology station is 305.9 mm but ranges between 100 mm in 2009 to 750 mm in 2010. Predominant wind directions are from the southeast and east. The instrument mast is 10 m tall. Fluxes of heat, water vapour and carbon are measured using the open-path eddy covariance technique at 9.81m. Supplementary measurements above the canopy include temperature and humidity (9.81 m), windspeed and wind direction (8.28 m), downwelling and upwelling shortwave and longwave radiation (9.9 m). Precipitation is monitored in the savanna (2.5m). Supplementary measurements within and below the canopy include barometric pressure (2 m). Below ground soil measurements are made beneath Triodia, mulga and grassy understorey and include ground heat flux (0.08 m), soil temperature (0.02 m – 0.06 m) and soil moisture (0 – 0.1m, 0.1 – 0.3m, 0.6 – 0.8m and 1.0 – 1.2m). <br />For additional site information, see http://ozflux.org.au/siteOfTheMonth/2020-09Alice-and-TiTree/2020-09Alice-and-TiTree.html . <br /><br />

  • Categories    

    This dataset consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in a farming area using eddy covariance techniques.<br/><br/>The Myall Vale B site is located on a privately owned irrigated field near Boggabri New South Wales. The terrain is flat and elevation of the site is close to 240 m above mean sea level.<br/><br/>The flux tower was commissioned on 17/01/2024.

  • Categories    

    This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The site was identified as tropical pasture dominated by species <em>Chamaecrista rotundifolia</em> (Round-leaf cassia cv. Wynn), <em>Digitaria milijiana</em> (Jarra grass) and <em>Aristida sp.</em> standing at approximately 0.3m tall. The soil at the site was a mixture of red kandosol and deep sand. Elevation of the site was close to 70m and mean annual precipitation at a nearby Bureau of Meteorology site was 1250mm. Maximum temperatures ranged from 37.5°C (in October) to 31.2°C (in June), while minimum temperatures ranged from 12.6°C (in July) to 23.8°C (in January). Maximum temperatures varied on a seasonal basis between 6.3°C while minimum temperatures varied by 11.2°C. <br /> <br /> The instrument mast was 15 meters tall. Heat, water vapour and carbon dioxide measurements were taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation were measured. <br />Ancillary measurements taken at the site included LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008. <br /> The site was destroyed by fire in September 2013. <br />