LAND Topography Models
Type of resources
Keywords
Contact for the resource
Provided by
Years
status
-
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The data in this collection are available at 1 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18335 . The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces, by aggregating the cells in a 3x3 window and taking the mean value. The 3 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18336
-
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The monthly data in this collection are available at 1 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:9633 . The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces by aggregating the cells in a 3x3 window and taking the mean value. The 3 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18612
-
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The monthly data in this collection are available at 3 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces, by aggregating the cells in a 3x3 window and taking the mean value. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:9632 . The 1 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18491
-
Profile curvature is the rate of change of potential gradient down a flow line and represents the changes in flow velocity down a slope. It is significant for flow acceleration, erosion/deposition rates and geomorphology. The profile curvature product was derived from the Smoothed Digital Elevation Model (DEM-S; ANZCW0703014016), which was derived from the 1 arc-second resolution SRTM data acquired by NASA in February 2000. The calculation of profile curvature from DEM-S accounted for the varying spacing between grid points in the geographic projection. This collection includes Profile Curvature data at 1 arc-second and 3 arc-second resolutions. The 3 arc-second resolution product was generated from the 1 arc-second profile curvature product and masked by the 3” water and ocean mask datasets.
-
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The data in this collection are available at 1 arcsecond resolution as 1x1 degree tiles. 813 tiles make up the extent of Australia. The 1 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:9634 . The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces, by aggregating the cells in a 3x3 window and taking the mean value. The 3 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18336
-
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The monthly data in this collection are available at 1 arcsecond resolution as 1x1 degree tiles in ESRI float grid format. 813 tiles make up the extent of Australia. The 1 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18611 . The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces by aggregating the cells in a 3x3 window and taking the mean value. The 3 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18612
-
MrVBF is a topographic index designed to identify areas of deposited material at a range of scales based on the observations that valley bottoms are low and flat relative to their surroundings and that large valley bottoms are flatter than smaller ones. Zero values indicate erosional terrain with values 1 and larger indicating progressively larger areas of deposition. There is some evidence that MrVBF values correlate with depth of deposited material. This collection includes 1 arc-second and 3 arc-second resolution versions of MrVBF. The 3 arc-second resolution product was generated from the 1 arc-second MrVBF product and masked by the 3” water and ocean mask datasets.
-
The elevation range measures the full range of elevations within a circular window and can be used as a representation of local relief. The 300 m elevation range product was derived from the Smoothed Digital Elevation Model (DEM-S; ANZCW0703014016), which was derived from the 1 arc-second resolution SRTM data acquired by NASA in February 2000. This collection includes data at 1 arc-second and 3 arc-second resolutions. The 3 arc-second resolution product was generated from the 1 arc-second 300 m elevation range product and masked by the 3” water and ocean mask datasets.
-
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The monthly data in this collection are available at 1 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:9530 . The 3 arc-second resolution versions of these radiation surfaces have been produced from the 1 arc-second resolution surfaces, by aggregating the cells in a 3x3 window and taking the mean value. The 3 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18852
-
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The monthly data in this collection are available at 1 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:9631 . The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces, by aggregating the cells in a 3x3 window and taking the mean value. The 3 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18732
TERN Geospatial Catalogue