HyQuest Solutions TB4
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Update frequencies
status
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The Digby Plantation flux station was installed in a recently planted blue gum (<em>Eucalyptus globulus</em>) plantation near the town of Digby in western Victoria, Australia. The plantatiopn was establlished in August 2017 with a tree density of approximately 1000 trees per hectare. The seedlings were about 30 cm tall and the trees were about 11 m tall in July 2021. The equipment was installed on an extendable tower that was moved from 5 m at the beginning of the monitoring period to about 15 m at the end of the experiment, following the growth of the trees.<br />
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br> The Arcturus greenhouse gas (GHG) monitoring station was established in July 2010, 48 km southeast of Emerald, Queensland. Flux tower measurements were carried out from June 2011 to early 2014. The station was part of a collaborative project between Geoscience Australia (GA) and CSIRO Marine and Atmospheric Research (CMAR). The elevation of the site is approximately 170 m asl and mean annual precipitation is 572 mm. The tower bordered 2 land use types to the west lightly forested tussock grasslands; to the east crop lands, cycling through fallow periods. The instruments were installed on a square lattice tower with an adjustable pulley lever system to raise and lower the instrument arm. The tower was 5.6 m tall with the instrument mast extending a further 1.1 m above, totalling a height of 6.7 m. Fluxes of heat, water vapour, methane and carbon dioxide were measured using the open-path eddy flux technique. Supplementary measurements above the canopy included temperature, humidity, windspeed, wind direction, rainfall, and the four components of net radiation. Soil heat flux, soil moisture and soil temperature measurements were also collected. <br />
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The Digby Plantation flux station was installed in a recently planted blue gum (<em>Eucalyptus globulus</em>) plantation near the town of Digby in western Victoria, Australia. The plantatiopn was establlished in August 2017 with a tree density of approximately 1000 trees per hectare. The seedlings were about 30 cm tall and the trees were about 11 m tall in July 2021. The equipment was installed on an extendable tower that was moved from 5 m at the beginning of the monitoring period to about 15 m at the end of the experiment, following the growth of the trees.<br />
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br> The Arcturus greenhouse gas (GHG) monitoring station was established in July 2010, 48 km southeast of Emerald, Queensland. Flux tower measurements were carried out from June 2011 to early 2014. The station was part of a collaborative project between Geoscience Australia (GA) and CSIRO Marine and Atmospheric Research (CMAR). The elevation of the site is approximately 170 m asl and mean annual precipitation is 572 mm. The tower bordered 2 land use types to the west lightly forested tussock grasslands; to the east crop lands, cycling through fallow periods. The instruments were installed on a square lattice tower with an adjustable pulley lever system to raise and lower the instrument arm. The tower was 5.6 m tall with the instrument mast extending a further 1.1 m above, totalling a height of 6.7 m. Fluxes of heat, water vapour, methane and carbon dioxide were measured using the open-path eddy flux technique. Supplementary measurements above the canopy included temperature, humidity, windspeed, wind direction, rainfall, and the four components of net radiation. Soil heat flux, soil moisture and soil temperature measurements were also collected. <br />
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.17) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br> The Arcturus greenhouse gas (GHG) monitoring station was established in July 2010, 48 km southeast of Emerald, Queensland. Flux tower measurements were carried out from June 2011 to early 2014. The station was part of a collaborative project between Geoscience Australia (GA) and CSIRO Marine and Atmospheric Research (CMAR). The elevation of the site is approximately 170 m asl and mean annual precipitation is 572 mm. The tower bordered 2 land use types to the west lightly forested tussock grasslands; to the east crop lands, cycling through fallow periods. The instruments were installed on a square lattice tower with an adjustable pulley lever system to raise and lower the instrument arm. The tower was 5.6 m tall with the instrument mast extending a further 1.1 m above, totalling a height of 6.7 m. Fluxes of heat, water vapour, methane and carbon dioxide were measured using the open-path eddy flux technique. Supplementary measurements above the canopy included temperature, humidity, windspeed, wind direction, rainfall, and the four components of net radiation. Soil heat flux, soil moisture and soil temperature measurements were also collected. <br />
-
This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Arcturus greenhouse gas (GHG) monitoring station was established in July 2010, 48 km southeast of Emerald, Queensland, with flux tower measurements starting in June 2011 until early 2014. The station was part of a collaborative project between Geoscience Australia (GA) and CSIRO Marine and Atmospheric Research (CMAR). Elevation of the site was approximately 170m asl and mean annual precipitation was 572mm. The tower bordered 2 land use types split N-S: To the west lightly forested tussock grasslands; To the east crop lands, cycling through fallow periods.The instruments were installed on a square lattice tower with an adjustable pulley lever system to raise and lower the instrument arm. The tower was 5.6m tall with the instrument mast extending a further 1.1m above, totalling a height of 6.7m. Fluxes of heat, water vapour, methane and carbon dioxide were measured using the open-path eddy flux technique. Supplementary measurements above the canopy included temperature, humidity, windspeed, wind direction, rainfall, and the 4 components of net radiation. Soil heat flux, soil moisture and soil temperature measurements were also collected. <br /> For additional site information, see http://www.ozflux.org.au/monitoringsites/arcturus/index.html.<br /><br />
-
This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in southeast of Emerald, Queensland, using eddy covariance techniques. <br /> <br /> The Arcturus greenhouse gas (GHG) monitoring station was established in July 2010, 48 km southeast of Emerald, Queensland, with flux tower measurements starting in June 2011 until early 2014. The station was part of a collaborative project between Geoscience Australia (GA) and CSIRO Marine and Atmospheric Research (CMAR). Elevation of the site was approximately 170m asl and mean annual precipitation was 572mm. The tower bordered 2 land use types split N-S: To the west lightly forested tussock grasslands; To the east crop lands, cycling through fallow periods.The instruments were installed on a square lattice tower with an adjustable pulley lever system to raise and lower the instrument arm. The tower was 5.6m tall with the instrument mast extending a further 1.1m above, totalling a height of 6.7m. Fluxes of heat, water vapour, methane and carbon dioxide were measured using the open-path eddy flux technique. Supplementary measurements above the canopy included temperature, humidity, windspeed, wind direction, rainfall, and the 4 components of net radiation. Soil heat flux, soil moisture and soil temperature measurements were also collected. <br /> For additional site information, see http://www.ozflux.org.au/monitoringsites/arcturus/index.html.<br /><br /> This data is also available at http://data.ozflux.org.au .
-
This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. <br /> <br /> The Arcturus greenhouse gas (GHG) monitoring station was established in July 2010, 48 km southeast of Emerald, Queensland, with flux tower measurements starting in June 2011 until early 2014. The station was part of a collaborative project between Geoscience Australia (GA) and CSIRO Marine and Atmospheric Research (CMAR). Elevation of the site was approximately 170m asl and mean annual precipitation was 572mm. The tower bordered 2 land use types split N-S: To the west lightly forested tussock grasslands; To the east crop lands, cycling through fallow periods.The instruments were installed on a square lattice tower with an adjustable pulley lever system to raise and lower the instrument arm. The tower was 5.6m tall with the instrument mast extending a further 1.1m above, totalling a height of 6.7m. Fluxes of heat, water vapour, methane and carbon dioxide were measured using the open-path eddy flux technique. Supplementary measurements above the canopy included temperature, humidity, windspeed, wind direction, rainfall, and the 4 components of net radiation. Soil heat flux, soil moisture and soil temperature measurements were also collected. <br /> For additional site information, see http://www.ozflux.org.au/monitoringsites/arcturus/index.html.<br /><br />
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.5.0) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br> The Arcturus greenhouse gas (GHG) monitoring station was established in July 2010, 48 km southeast of Emerald, Queensland. Flux tower measurements were carried out from June 2011 to early 2014. The station was part of a collaborative project between Geoscience Australia (GA) and CSIRO Marine and Atmospheric Research (CMAR). The elevation of the site is approximately 170 m asl and mean annual precipitation is 572 mm. The tower bordered 2 land use types to the west lightly forested tussock grasslands; to the east crop lands, cycling through fallow periods. The instruments were installed on a square lattice tower with an adjustable pulley lever system to raise and lower the instrument arm. The tower was 5.6 m tall with the instrument mast extending a further 1.1 m above, totalling a height of 6.7 m. Fluxes of heat, water vapour, methane and carbon dioxide were measured using the open-path eddy flux technique. Supplementary measurements above the canopy included temperature, humidity, windspeed, wind direction, rainfall, and the four components of net radiation. Soil heat flux, soil moisture and soil temperature measurements were also collected. <br />
-
<br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.15) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br><br> The Digby Plantation flux station was installed in a recently planted blue gum (<em>Eucalyptus globulus</em>) plantation near the town of Digby in western Victoria, Australia. The plantatiopn was establlished in August 2017 with a tree density of approximately 1000 trees per hectare. The seedlings were about 30 cm tall and the trees were about 11 m tall in July 2021. The equipment was installed on an extendable tower that was moved from 5 m at the beginning of the monitoring period to about 15 m at the end of the experiment, following the growth of the trees.<br />