From 1 - 2 / 2
  • Categories    

    This dataset indicates the presence and persistence of water across Queensland between 1988 and 2022. Water is one of the world’s most important resources as it’s critical for human consumption, agriculture, the persistence of flora and fauna species and other ecosystem services. Information about the spatial distribution and prevalence of water is necessary for a range of business, modelling, monitoring, risk assessment, and conservation activities. The water count product is based on water index and water masks for Queensland (Danaher & Collett 2006) and represents the proportion of observations with water present across the Landsat time series as a fraction of total number of possible observations for the period 1 Jan 1988 to 31 Dec 2022. The product has two bands where band 1 is the number of times water was present across the time series, and band 2 is the count of unobscured (i.e. non-null) input pixels, or number of total observations for that pixel. Cloud, cloud-shadow, steep slopes and topographic shadow can obscure the ability to count water presence.

  • Categories    

    The dataset contains maps of total % C<sub>3</sub> and C<sub>4</sub> plant cover, proportional C<sub>3</sub> and C<sub>4</sub> vegetation (relative to combined C<sub>3</sub> and C<sub>4</sub> cover), and vegetation &delta;<sup>13</sup>C isoscape (stable carbon isotope values) across Australia. Data are centered on year 2015. We used vegetation and land-use rasters to categorize grid-cells (100 m<sup>2</sup>) into woody (C<sub>3</sub>), native herbaceous (C<sub>3</sub> and C<sub>4</sub>), and herbaceous cropland (C<sub>3</sub> and C<sub>4</sub>) cover. TERN Ecosystem Surveillance field surveys and environmental factors were regressed to predict native C<sub>4</sub> herbaceous cover. These layers were combined and a &delta;<sup>13</sup>C mixing model was used to calculate site-averaged &delta;<sup>13</sup>C values.