From 1 - 9 / 9
  • Categories    

    <p>This data set provides the photosynthetic pathways for 2428 species recorded across 541 plots surveyed by Australia’s Terrestrial Ecosystem Research Network (TERN) between 2011 and 2017 (inclusive). TERN survey plots are 1 ha (100 x 100 m) permanently established sites located in a homogeneous area of terrestrial vegetation. At each plot, TERN survey teams record vegetation composition and structural characteristics and collect a range of plant samples using a point-intercept method. Species were assigned a photosynthetic pathway using literature and carbon stable isotope analysis of bulk tissue collected by TERN at the survey plots. </p><p>The data set is comprised of two data tables and one data descriptor that defines the values in the two data tables. The first table contains a list of each species and its photosynthetic pathway. The second table includes a list of all the peer-reviewed sources used to create this data set. </p><p>This data set will be updated on an annual basis as TERN’s plot network expands and new information becomes available. </p>

  • Categories    

    The soil in terrestrial and blue carbon ecosystems (BCE; mangroves, tidal marshes, seagrasses) is a significant carbon (C) sink. National assessments of C inventories are needed to protect them and aid nature-based strategies to sequester atmospheric carbon dioxide. We harmonised measurements from Australia's terrestrial and BCE and, using consistent multi-scale spatial machine learning, unravelled the drivers of soil organic carbon (SOC) variation and digitally mapped their stocks. The modelling shows that climate and vegetation are continentally the primary drivers of SOC variation. But the underlying regional drivers are ecosystem type, terrain, clay content, mineralogy, and nutrients. The digital soil maps indicate that in the 0-30&nbsp;cm soil layer, terrestrial ecosystems hold 27.6&nbsp;Gt (19.6-39.0&nbsp;Gt), and BCE 0.35&nbsp;Gt (0.20-0.62&nbsp;Gt). Tall open eucalypt and mangrove forests have the largest mean SOC per unit area. Eucalypt woodlands and hummock grassland, which occupy vast areas, store the largest total SOC stock. These ecosystems constitute important regions for conservation, emissions avoidance, and preservation because they also provide additional co-benefits.

  • Categories    

    The data set contains information on leaf <sup>13</sup>C isotope composition studied on three species, <i>Maireana sedifolia</i>, <i>Ptilotus obovatus</i> and <i>Eremophila scoparia</i> from the core 1 ha Salmon Gum plot at the Credo, Great Western Woodland site.

  • Categories    

    This is Version 2 of the Australian Soil Organic Carbon product of the Soil and Landscape Grid of Australia.<br /><br /> The map gives a modelled estimate of the spatial distribution of total organic carbon in soils across Australia.<br /><br /> It supersedes the Release 1 product that can be found at <a href="https://doi.org/10.4225/08/547523BB0801A">https://doi.org/10.4225/08/547523BB0801A</a><br /><br /> <p>The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5&nbsp;cm, 5-15&nbsp;cm, 15-30&nbsp;cm, 30-60&nbsp;cm, 60-100&nbsp;cm and 100-200&nbsp;cm. These depths are consistent with the specifications of the GlobalSoilMap.net project - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/Resources/GlobalSoilMap_specifications_december_2015_2.pdf">GlobalSoilMaps</a>. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90&nbsp;m pixels).</p> Detailed information about the Soil and Landscape Grid of Australia can be found at - <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/index.html">SLGA</a><br /><br /> <ul style="list-style-type: disc;"><li>Attribute Definition: Mass fraction of carbon by weight in the < 2&nbsp;mm soil material as determined by dry combustion at 900 Celsius Units: %;</li> <li>Period (temporal coverage; approximately): 1970-2021;</li> <li>Spatial resolution: 3 arc seconds (approximately 90&nbsp;m);</li> <li>Total number of gridded maps for this attribute: 18;</li> <li>Number of pixels with coverage per layer: 2007M (49200 * 40800);</li> <li>Target data standard: GlobalSoilMap specifications;</li> <li>Format: Cloud Optimised GeoTIFF</li></ul>

  • Categories    

    Destructive sampling of 47 <em>Eucalyptus obliqua</em> trees was carried out in the Warra Tall Eucalypt site to determine a range of biomass measures that can be used to inform allometric equations.

  • Categories    

    This dataset comprises of new, high precision radiocarbon dates for 20 mainland thylacines and 24 mainland devils. Metadata includes museum accession numbers and origin of specimens. We envision that this dataset could be used in studies of paleo-ecological reconstructions and for estimating extinction time for both devils and thylacines on mainland Australia. This dataset includes the youngest reliable fossil ages for both species on mainland Australia as per the criteria set out in Rodriguez-Rey at al (2015). <i>"Criteria for assessing the quality of Middle Pleistocene to Holocene vertebrate fossil ages."</i> Quaternary Geochronology 30 (2015): 69-79.

  • Categories    

    The record contains information on litterfall data collected from the dry sclerophyll forest, Samford Peri-Urban Site, South East Queensland from between 2011-2013. Data on plant litter weight, leaf carbon and nitrogen content are provided.

  • Categories    

    The record contains information on leaf chemistry studied on co-occurring tropical mountaintop restricted tree species from various mountaintop sites in Far North Queensland in 2019. Data on leaf stable carbon and nitrogen isotope concentrations, and elemental chemistry such as carbon, nitrogen, phosphorous, calcium, magnesium, potassium, sodium, copper, boron, sulfur, zinc and manganese are provided.

  • Categories    

    <br>The Brigalow Catchment Study (BCS) in the brigalow (<em>Acacia harpophylla</em>) bioregion of central Queensland, commenced in 1965 with a pre-clearing calibration phase of 17 years to define the hydrology of 3 adjoining catchments (12-17&nbsp;ha). Following clearing of 2 catchments in 1982, 3 land uses, brigalow forest, cropping, and grazed pasture, were established and monitored for water balance, resource condition and productivity. This trial has provided data and scientific understanding on the interaction of climate, soils, water, land use and management for resource condition across the three major land uses. Soil samples from the trial site have been used in calibration of the Roth C model for use in estimating Australia’s national greenhouse gas inventory.</br>