From 1 - 10 / 22
  • Categories    

    Dynamically downscaled high-resolution (~10 km spatial resolution) climate change projection data for Queensland. Downscaling was completed using CSIRO Conformal Cubic Atmospheric Model (CCAM) for two RCPs (RCP4.5 and RCP8.5) from 11 CMIP5 global coarse resolution models for period 1980-2099. The Queensland Future Climate Dashboard (www.longpaddock.qld.gov.au/qld-future-climate/ ) provides easy access to climate projection for Queensland. The dashboard allows users to explore, visualize and download the latest high-resolution climate modelling data for specific regions, catchments, disaster areas, local government areas and grid squares. Underlying data is provided via TERN for easy access for each of 11 downscaled models. The Queensland Future Climate Dataset provides high resolution data for over 30 different metrics grouped in six climate themes: (i) Mean Climate; (ii) Heatwaves; (iii) Extreme Temperature Indices; (iv) Extreme Precipitation Indices; (v) Droughts; and (vi) Floods. In addition selected variables at daily and monthly intervals are also available.

  • Categories    

    <p>This dataset contains audio files from Robson Creek Rainforest SuperSite. The 25 hectare site lies on the Atherton Tablelands in the wet tropical rainforests of Australia at 680-740&nbsp;m elevation. It is situated in Danbulla National Park within the Wet Tropics World Heritage Area. The forest is classified as Regional Ecosystem (RE) 7.3.36a, complex mesophyll vine forest. The climate is seasonal with approximately 60% of rain falling between January and March and the landform is moderately inclined with a low relief. There are 208 species in the site, and maximum canopy height is 44&nbsp;m. All stems ≥ 10&nbsp;cm diameter are measured, tagged and mapped. For additional site information, see <a href="https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/robson-creek-rainforest-supersite">Robson Creek Rainforest SuperSite</a></p> <p>In 2020 four acoustic recorders were set up to collect audio data continuously as part of the Australian Acoustic Observatory (A2O) project. Two recorders were placed in relatively wet habitats and two in relatively dry habitats.</p>

  • Categories    

    1. Restoration of degraded landscapes has become increasingly important for conservation of species and their habitats owing to habitat destruction and rapid environmental change. An increasing focus for restoration activity are old-fields as agricultural land abandonment has expanded in the developed world. Studies examining outcomes of ecological restoration predominantly focus on vegetation structure and plant diversity, and sometimes vertebrate fauna. Fewer studies have systematically investigated effects of restoration efforts on soil chemical and biophysical condition or ground-dwelling invertebrates and there is limited synthesis of these data. 2. This dataset comprised data for a global meta-analysis of published studies to assess the effects on soil properties and invertebrates of restoring land that was previously used for agriculture. Studies were included if the site had been either cropped or grazed, restoration was either active (planting) or passive (abandonment, fencing) and if adequate data on soil chemical or physical properties or invertebrate assemblages were reported for restored, control (cropped/grazed) or reference sites. 3. The dataset includes 42 studies, published between 1994 and 2019 that met the inclusion criteria, covering 16 countries across all continents. More studies assessed passive restoration approaches than active planting, and native species were more commonly planted than exotic species.

  • Categories    

    <br>This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in high-altitude grassy peatland ecosystem using eddy covariance techniques. It been processed using PyFluxPro (v3.4.4) as described in Isaac et al. (2017), <a href="https://doi.org/10.5194/bg-14-2903-2017">https://doi.org/10.5194/bg-14-2903-2017</a>. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see <a href="https://github.com/OzFlux/PyFluxPro/wiki">https://github.com/OzFlux/PyFluxPro/wiki</a>. </br> <br>Silver Plains Flux Station was established in 2019 in Interlaken, on the Tasmanian Central Plateau, on land owned and managed by the Tasmanian Land Conservancy. </br><br>This data is also available at http://data.ozflux.org.au</br>

  • Categories    

    <p>This dataset contains audio files for Litchfield Savanna SuperSite. Litchfield Savanna SuperSite was established in 2013 in Litchfield National Park. Site selection was influenced by the history of long-term monitoring work undertaken in this area by the Darwin Centre for Bushfire Research (formerly Bushfires NT). The core 1 ha plot is dominated by <em>Eucalyptus miniata</em> and <em>Eucalyptus tetrodonta</em>. The site is representative of the dominant ecosystem type across northern Australia: frequently burnt tropical savanna in high rainfall areas. For additional site information, see <a href="https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/litchfield-savanna-supersite">Litchfield Savanna SuperSite</a></p> <p>In 2020 four acoustic recorders were set up to collect audio data continuously as part of the Australian Acoustic Observatory (A2O) project. Two recorders were placed in relatively wet habitats and two in relatively dry habitats.</p>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Silver Plains Flux Station was established in 2019 in Interlaken, on the Tasmanian Central Plateau, on land owned and managed by the Tasmanian Land Conservancy.</br>

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer at Silver Plains Station in Tasmania using eddy covariance techniques.</br> Silver Plains Flux Station was established in 2019 in Interlaken, on the Tasmanian Central Plateau, on land owned and managed by the Tasmanian Land Conservancy. <br />This data is also available at http://data.ozflux.org.au</br>

  • Categories    

    <p>This dataset contains audio files from Warra Tall Eucalypt SuperSite. Warra Tall Eucalypt SuperSite was established in 2012 and is located in a stand of tall, mixed-aged <em>Eucalyptus obliqua</em> forest (1.5, 125 and &gt;250 years-old) with a rainforest / wet sclerophyll understorey and a dense man-fern (<em>Dicksonia antarctica</em>) ground-layer. The site experienced a fire in January 2019, which consumed the ground layer and killed a high proportion of the understorey trees, but stimulated dense seedling regeneration. For additional site information, see <a href="https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/warra-tall-eucalypt-supersite">Warra Tall Eucalypt SuperSite</a></p> <p>In 2020 four acoustic recorders were set up to collect audio data continuously as part of the Australian Acoustic Observatory (A2O) project. Two recorders were placed in relatively wet habitats and two in relatively dry habitats.</p>

  • Categories    

    <p>This dataset contains audio files for TERN Fletcherview Tropical Rangeland SuperSite. Long-term recordings of the environment can be used to identify sound sources of interest, characterise the soundscape, aid in the assessment of fauna biodiversity, monitor temporal trends and track environmental changes.</p> <p>Fletcherview Tropical Rangeland SuperSite was established in 2021 at James Cook University’s Fletcherview Research Station, a fully operational outback cattle station located 50&nbsp;km west of Townsville, Queensland. The site is used for cattle grazing and is characterised by tall open savanna. The vegetation is dominated by native grasses such as blackspear and kangaroo grasses, as well as introduced species like buffel grass, signal grass and leucaena. Fletcherview typically experiences a dry and wet season, with most rainfall occurring between January and April.</p> <p>In 2020 four acoustic recorders were set up to collect audio data continuously as part of the Australian Acoustic Observatory (A2O) project. Two recorders were placed in relatively wet habitats and two in relatively dry habitats.</p>

  • Categories    

    Invertebrates dominate the animal world in terms of abundance, diversity and biomass and play critical roles in maintaining ecosystem function. Despite their obvious importance, disproportionate research attention remains focused on vertebrates, with knowledge and understanding of invertebrate ecology still lacking. Due to their inherent advantages, usage of camera traps in ecology has risen dramatically over the last three decades, especially for research on mammals. However, few studies have used cameras to reliably detect fauna such as invertebrates or used cameras to examine specific aspects of invertebrate ecology. Twenty-four Reconyx PC800 HyperfireTM cameras were deployed on 7th July 2016 at Main Camp and left until 12th October 2016 (98 days, or 2352 h of deployment) in the Simpson Desert, south-western Queensland, capturing 372 time-lapse images of Wolf spiders (Family Lycosidae). Images were tagged with camera location, position, angle, camera ID and presence of lycosids. Additionally, spotlight surveys were conducted in October 2016 every hour between dusk (19:30 h) and dawn (05:30 h) over three nights with a total of 352 lycosids observed. This data set was used to determine whether: 1) camera traps provide a viable method for detecting wolf spiders, 2) diel activity patterns of the spiders can be ascertained, and 3) patterns in spider activity vary with environmental conditions, specifically between burned and unburned habitats and the crests and bases of sand dunes. This data presents a useful example of the utility of cameras as a tool for determining the diel activity patterns and habitat use of larger arthropods such as wolf spiders. Please note: Camera trap images are not provided and only species occurrence records are included. Also, image files were renamed after collection, resulting in a number versus time conflict. However, dates and times of sightings provided are correct.