West Virginia University
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
The Central Appalachian region, USA, contains several high elevation-endemic woodland salamanders (genus Plethodon), which are thought to be particularly vulnerable to climate change due to their restricted distributions and low vagility. In West Virginia, there is a strong management focus on protection and recovery of the federally threatened Cheat Mountain salamander (Plethodon nettingi; CMS). To support this focus, there is a need for improved understanding of CMS occurrence-habitat relationships and spatially explicit projections of fine-scale contemporary and potential future habitat quality to inform management actions. In addition, there is concern among resource managers that climate change may increase habitat quality at high elevations for CMS competitors, particularly the eastern red-backed salamander (Plethodon cinereus; RBS), potentially resulting in increased competition pressure for CMS. To address these knowledge gaps, we created ecological niche models for CMS and RBS using the Random Forest classification algorithm and used the estimated occurrence-habitat relationships to assess ecological niche overlap between the species and project fine-scale contemporary and potential future habitat availability and quality. We estimated that the ecological niches of CMS and RBS were 80.5% similar, and habitat projections indicated the species would exhibit opposite responses to climate change in our region. For CMS, we estimated that amount of high-quality habitat will be reduced by mid-century and potentially lost by end-of-century, but that moderate and low-quality habitat will persist. For RBS, we estimated that amount of high-quality habitat will increase through end-of-century, and that high elevations will become more suitable for the species, indicating that competition pressure for CMS is likely to increase. This study improves understanding of important habitat characteristics for CMS and RBS, and our spatially explicit projections can assist natural resource managers with habitat protection actions, species monitoring efforts, and climate change adaptation strategies.