From 1 - 10 / 40
  • Categories    

    This dataset contains UAV multispectral imagery collected as part of a field trial to test the Unmanned Aerial System to be used for the TERN Drone project. The UAS platform is DJI Matrice 300 RTK with 2 sensors: Zenmuse P1 (35 mm) RGB mapping camera and Micasense RedEdge-MX (5-band multispectral sensor). P1 imagery were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 Mobile Station. P1 Camera positions were post-processed using <a href="https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos">AUSPOS</a>. The flights took place between 14:58 and 03:08 at a height of 80m with a flying speed set to 5 m/s. Forward and side overlaps of photographs were set to 80%. <br><br> Micasense multispectral sensor positions were interpolated using P1, following which a standard workflow was followed in Agisoft Metashape to generate this orthomosaic (resolution 5 cm). Reflectance calibration was performed using captures of the MicaSense Calibration Panel taken before the flight. The orthomosaic raster has the relative reflectance (no unit) for the 5 bands (B, G, R, RedEdge, NIR). This cloud optimised (COG) GeoTIFF was created using rio command line interface. The coordinate reference system of the COG is EPSG 7855 - GDA2020 MGA Zone 55. <br><br> In the raw data RedEdge-MX image file suffixes correspond to bands like so - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge. However, in the processed Orthomoasic GeoTIFF, the bands are ordered in the wavelength order (Blue, Green, Red, Red Edge, NIR).

  • Categories    

    This dataset contains UAV multispectral imagery collected as part of a field trial to test the Uncrewed Aerial System to be used for the TERN Drone project. The UAS platform is DJI Matrice 300 RTK with 2 sensors: Zenmuse P1 (35 mm) RGB mapping camera and Micasense RedEdge-MX Dual (10-band multispectral sensor). P1 imagery were geo-referenced using the onboard GNSS in M300 and the D-RTK 2 Mobile Station. P1 Camera positions were post-processed using <a href="https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos">AUSPOS</a>. Flight conducted between 10:26 am and 10:47 am AEDT at flying height 80 m, forward and side overlaps for Zenmuse P1 set to 80%. MicaSense RedEdge-MX Dual triggered using timer mode (every second). <br><br> Micasense multispectral sensor positions were interpolated using P1, following which a standard workflow was followed in Agisoft Metashape to generate this orthomosaic (resolution 5 cm). Reflectance calibration was performed using captures of the MicaSense Calibration Panel taken before the flight. The orthomosaic raster has the relative reflectance (no unit) for the 10 bands (Coastal Blue, Blue, Green 531, Green, Red 650, Red, RedEdge 705, RedEdge, RedEdge 740, NIR). The cloud optimised (COG) GeoTIFF was created using rio command line interface. The coordinate reference system of the COG is EPSG 7855 - GDA2020 MGA Zone 55. <br><br> In the raw data RedEdge-MX image file suffixes correspond to bands like so - 1: Blue, 2: Green, 3: Red, 4: NIR, 5: Red Edge, 6: Coastal Blue, 7: Green 531, 8: Red 650, 9: RedEdge 705, 10: RedEdge 740. However, in the processed Orthomoasic GeoTIFF, the bands 1-10 are ordered as per the Central Wavelength (Coastal Blue, Blue, Green 531, Green, Red 650, Red, RedEdge 705, RedEdge, RedEdge 740, NIR).

  • Categories    

    This dataset contains UAV RGB imagery collected as part of a field trial to test the Uncrewed Aerial System to be used for the TERN Drone project. The UAS platform is DJI Matrice 300 RTK with 2 sensors: Zenmuse P1 (35 mm) RGB mapping camera and Micasense RedEdge-MX Dual (10-band multispectral sensor). P1 imagery were georeferenced using the onboard GNSS in M300 and the D-RTK 2 Mobile Station. Camera positions were post-processed using <a href="https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos">AUSPOS</a>. Flight conducted between 10:26 am and 10:47 am AEDT at flying height 80 m, forward and side overlap set to 80%. <br><br> RGB orthomosaic (resolution: 1 cm. CRS: EPSG 7855 - GDA2020 MGA Zone 55) generated using Agisoft Metashape Professional, and a cloud optimised GeoTIFF was created using rio command line interface.

  • Categories    

    This dataset contains UAV RGB imagery collected as part of a field trial to test the Uncrewed Aerial System to be used for the TERN Drone project. The UAS platform is DJI Matrice 300 RTK with 2 sensors: Zenmuse P1 (35 mm) RGB mapping camera and Micasense RedEdge-MX (5-band multispectral sensor). P1 imagery were georeferenced using the onboard GNSS in M300 and the D-RTK 2 Mobile Station. Camera positions were post-processed using <a href="https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos">AUSPOS</a>. The flight took place between 14:00 and 14:08 at a height of 80m with a flying speed set to 5 m/s. Forward and side overlaps of photographs were set to 80%. <br><br> Agisoft Metashape was used to generate this RGB orthomosaic (resolution 1 cm). This cloud optimised GeoTIFF was created using rio command line interface. The coordinate reference system of the orthomosaic is EPSG 7855 - GDA2020 MGA Zone 55.

  • Categories    

    Data on weather conditions at the Warra Tall Eucalypt site collected between 2004 - 2012. Data includes daily maximum and minimum temperatures, wind speed, wind direction, rainfall and humidity.

  • Categories    

    This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer at Silver Plains Station in Tasmania using eddy covariance techniques.</br> Silver Plains Flux Station was established in 2019 in Interlaken, on the Tasmanian Central Plateau, on land owned and managed by the Tasmanian Land Conservancy. <br />This data is also available at http://data.ozflux.org.au</br>

  • Categories    

    <br>This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.7) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).</br> <br>Silver Plains Flux Station was established in 2019 in Interlaken, on the Tasmanian Central Plateau, on land owned and managed by the Tasmanian Land Conservancy.</br>

  • Categories    

    The dataset consists of results from two stream mesocosm experiments that were conducted in the summer-autumn of 1996 and 1997 to distinguish the influence of fine sediment loads and nutrient concentrations on benthic macro-invertebrate and algal communities. 11 biological variables were extracted from the results of this experiment and were standardized for the purpose of training neural networks that could be used to diagnose nutrient and fine sediment impacts in field surveys. The 11 variables were selected according to how well they correlated with the experimental treatment levels (high and low values of both nutrients and fine sediments). The 11 variables were: chlorophyll a (mg/m2), macro-invertebrate familial richness, total abundance, and the abundance of <em>Oligochaeta, Leptoperla varia (Gripopterygidae), Nousia spp. (Leptophlebiidae), Austrophlebioides spp. (Leptophlebiidae), Orthocladiinae, Tanypodinae, Tipulidae</em> and larval <em>Scirtidae</em>. These taxa were abundant within and among the stream mesocosm communities and are common in a wide range of Tasmanian rivers. Values for each of 11 biological response variables were standardized by dividing by their average value observed in the experimental controls mesocosm samples from that year. See Magierowski RH, Read SM, Carter SJB, Warfe DM, Cook LS, Lefroy EC, et al. (2015) <i>Inferring Landscape-Scale Land-Use Impacts on Rivers Using Data from Mesocosm Experiments and Artificial Neural Networks.</i> PLoS ONE 10(3): e0120901. https://doi.org/10.1371/journal.pone.0120901 https://doi.org/10.1371/journal.pone.0120901. This data was collected for the purpose of training artificial neural networks that could diagnose nutrient and sediment impacts in Tasmanian rivers. Each of the 11 variables were standardized by their average value observed in the experimental control samples from that year and some experimental treatment effects (Light) were ignored to simplify the neural network training process. Therefore, these data should not be used to make conclusions about the impacts of fine sediments and nutrients in Tasmanian rivers.

  • Categories    

    This data contains a once-off general structural description according to the National Vegetation Information System (NVIS) level 6 for the core 1 hectare plot in the Warra Tall Eucalypt site in 2014. Dominant growth form, cover, height and species (up to 5 species in order of dominance) for up to 3 sub-stratum per traditional strata (Ground, Mid and Upper).

  • Categories    

    The dataset comprises calculations of diameter, height, volume, biomass (total and carbon) of all stems (dead or alive) > 10cm diameter at breast height in the Core 1-ha plot at the Warra Tall Eucalypt site