From 1 - 5 / 5
  • Categories    

    The dataset accompanies the paper by Zemunik et al. (2015), which used the Jurien Bay dune chronosequence to investigate the changes in the community-wide suite of plant nutrient-acquisition strategies in response to long-term soil development. The study was located in the Southwest Australian biodiversity hotspot, in an area with an extremely rich regional flora. The dataset consists of both flora and soil data that not only allow all analyses presented in the paper (Zemunik et al. 2015) to be independently investigated, but also would allow further exploration of the data not considered or presented in the study. The study used a randomised stratified design, stratifying the dune system of the chronosequence into six stages, the first three spanning the Holocene (to ~6.5 ka) and oldest spanning soil development from the Early to Middle Pleistocene (to ~2 Ma). Floristic surveys were conducted in 60 permanent 10 m × 10 m plots (10 plots in each of six chronosequence stages). Each plot was surveyed at least once between August 2011 and March 2012, and September 2012. To estimate canopy cover and number of individuals for each plant species within the 10 m × 10 m plots, seven randomly-located 2 m × 2 m subplots were surveyed within each plot. Within each subplot, all vascular plant species were identified, the corresponding number of individuals was counted and the vertically projected vegetation canopy cover was estimated. Surface (0-20 cm) soil from each of the 420 subplots was collected, air dried and analysed at the Smithsonian Tropical Research Institute in Panama, for a range of chemical and physical properties, the main ones of which were considered in this paper being total and resin soil phosphorus, total nitrogen and dissolved organic nitrogen, soil total and organic carbon, and pH (measured in H20 and CaCl2). However, other soil data are also presented in the dataset. Nutrient-acquisition strategies were determined from the literature, where known, and from mycorrhizal analyses of root samples from species with poorly known strategies. Most of the currently known nutrient-acqusition strategies were found in the species of the chronosequence. Previous studies in the Jurien Bay chronosequence have established that its soil development conforms to models of long-term soil development first presented by Walker and Syers (1976); the youngest soils are N-limiting and the oldest are P-limiting (Laliberté et al. 2012). However, filtering of the regional flora by high soil pH on the youngest soils has the strongest effect on local plant species diversity (Laliberté et al. 2014). <br></br> References: [1] Zemunik, G., Turner, B., Lambers, H. et al. Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nature Plants 1, 15050 (2015). https://doi.org/10.1038/nplants.2015.50 ; [2] T.W. Walker, J.K. Syers. The fate of phosphorus during pedogenesis Geoderma, 15 (1) (1976), pp. 1-19, 10.1016/0016-7061(76)90066-5 ; [3] Laliberté, E., Turner, B.L., Costes, T., Pearse, S.J., Wyrwoll, K.H., Zemunik, G. & Lambers, H. (2012); [3] Laliberté, E., Turner, B.L., Costes, T., Pearse, S.J., Wyrwoll, K.-H., Zemunik, G. and Lambers, H. (2012), Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot. Journal of Ecology, 100: 631-642. https://doi.org/10.1111/j.1365-2745.2012.01962.; [4] Laliberté E, Zemunik G, Turner BL. Environmental filtering explains variation in plant diversity along resource gradients. Science. 2014 Sep 26;345(6204):1602-5. doi: 10.1126/science.1256330.

  • Categories    

    River sites were sampled during the summers of 2008/09 and 2009/10 in a survey designed to identify correlations between commonly used river condition variables and grazing land-use. Potential stream sites in northern Tasmania were screened by catchment size, northing and slope, and according to attributes aimed at minimising confounding variables, maintaining broad consistency in landscape and geomorphological context, and promoting independence among sites. A set of 27 survey sites was selected across a gradient from low to high proportion of land under grazing in their upstream catchments. Catchment sizes varied from 20-120 km2 and proportion grazing from 0-80%. Macroinvertebrates were sampled using Surber sampler. All macroinvertebrates within a 20% sub-sample identified to family and counted, with individuals from the insect orders Ephemeroptera, Plecoptera and Trichoptera identified to genus/species (by Laurie Cook, UTAS). Algal abundance was estimated at each site as the proportion of algal cover and as areal density of benthic chlorophyll a. Physical data variables collected were: water temperature, conductivity, turbidity, pH, total alkalinity, nitrate+nitrate, dissolved reactive phosphorus, total nitrogen, total phosphorus, overhead shading, the proportion of fine sediments within the sampled riffle zone, accumulated abstraction index and accumulated regulation index. For more information see: See Magierowski RH, Read SM, Carter SJB, Warfe DM, Cook LS, Lefroy EC and Davies PE. Inferring landscape-scale land-use impacts on rivers using data from mesocosm experiments and artificial neural networks. PLOS ONE.

  • Categories    

    The NSW Forest Monitoring Steering Committee commissioned the University of Melbourne to deliver baselines, drivers and trends for water quality and quantity in the NSW Regional Forest Agreement (RFA) regions. Following this work, the University of Melbourne was asked to extend the analysis to cover all NSW forested catchments. Both the initial project (RFA regions) and the extension (all NSW forested catchments) are included in this publication.<br> This dataset contains the estimated Mann-Kendall trends (direction and significance) in seven water quality and six water quantity indicators. The trends were estimated using a temporal regression that included a linear trend, the flow effect, a seasonality component and a lag-1 autoregressive residual model for which water quality data were sampled at daily or higher frequencies. For each water quality variable, trends were estimated for catchments which have 50% catchment area covered by forest, and long-term data monitored at the outlet of each catchment. All trends were estimated with the full historical records of each variable at each catchment in RFA regions, and the extension across all NSW forested catchments also produced short term trends. More detailed metadata for each dataset is included.<br> The seven quality indicators are: total phosphorus (TP), total nitrogen (TN), dissolved oxygen (DO), pH, electrical conductivity (EC), turbidity and water temperature (WTemp). <br> The six quantity indicators are: annual flow, annual rainfall-runoff residual, annual high flow, annual low flow, annual 7-day (7d) low flow and annual cease to flow (CTF).<br> Water monitoring sites analysed included those from the WaterNSW, Bureau of Meteorology, Water Data Online (BoM WDO) and Forestry Corporation NSW (FCNSW).<br> A web mapping application on the NSW Spatial Collaboration Portal depicts these datasets. Access the webapp through the link below: <br> https://portal.spatial.nsw.gov.au/portal/home/item.html?id=03950cf226ac4d459b8c8e3631e17afb

  • Categories    

    The dataset accompanies the paper by Zemunik et al. (2016), which used the Jurien Bay dune chronosequence to investigate the changes in the plant community diversity and turnover in response to long-term soil development. The Jurien Bay chronosequence is located in the Southwest Australian biodiversity hotspot, in an area with an extremely rich regional flora. The dataset consists of both flora and soil data that allows all analyses presented in the paper (Zemunik et al. 2016) to be independently investigated. The dataset is an update to that previously supplied for a prior study (Zemunik et al. 2015; DOI 10.4227/05/551A3DDE8BAF8). The study used a randomised stratified design, stratifying the dune system of the chronosequence into six stages, the first three spanning the Holocene (to ~6.5 ka) and oldest spanning soil development from the Early to Middle Pleistocene (to ~2 Ma). Floristic surveys were conducted in 60 permanent 10 m × 10 m plots (10 plots in each of six chronosequence stages). Each plot was surveyed at least once between August 2011 and March 2012, and September 2012. To estimate canopy cover and number of individuals for each plant species within the 10 m × 10 m plots, seven randomly-located 2 m × 2 m subplots were surveyed within each plot. Within each subplot, all vascular plant species were identified, the corresponding number of individuals was counted and the vertically projected vegetation canopy cover was estimated. Surface (0-20 cm) soil from each of the 420 subplots was collected, air dried and analysed at the Smithsonian Tropical Research Institute in Panama, for a range of chemical and physical properties: total and resin soil phosphorus; total nitrogen and dissolved organic nitrogen; soil total and organic carbon; exchangeable calcium (Ca), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn) and sodium (Na); Mehlich-III extractable iron, magnesium, copper (Cu) and zinc (Zn); and pH (measured in H20 and CaCl2). Nutrient-acquisition strategies were determined from the literature, where known, and from mycorrhizal analyses of root samples from species with poorly known strategies. Most of the currently known nutrient-acqusition strategies were found in the species of the chronosequence. Previous studies in the Jurien Bay chronosequence have established that its soil development conforms to models of long-term soil development first presented by Walker and Syers (1976); the youngest soils are N-limiting and the oldest are P-limiting (Laliberté et al. 2012). However, filtering of the regional flora by high soil pH on the youngest soils has the strongest effect on local plant species diversity (Laliberté et al. 2014). The update involved modification to species names due to taxonomic changes and the inclusion of additional soil analyses, not present in Zemunik et al. (2015). The additional soil variables (additional to DOI 10.4227/05/551A3DDE8BAF8) were exchangeable Ca, K, Al, Mg, Mn and Na, measured for all 420 subplots; and Cu, Fe, Mn and Zn, extracted in Mehlich III solution, for each of the 60 plots. References Laliberté, E., Turner, B.L., Costes, T., Pearse, S.J., Wyrwoll, K.H., Zemunik, G. & Lambers, H. (2012) Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot. Journal of Ecology, 100, 631-642. Walker, T.W. & Syers, J.K. (1976) The fate of phosphorus during pedogenesis. Geoderma, 15, 1-19. Zemunik, G., Turner, B.L., Lambers, H. & Laliberté, E. (2015) Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nature Plants 1, Article number: 15050, 1-4. Zemunik, G., Turner, B.L., Lambers, H. & Laliberté, E. (2016) Increasing plant species diversity and extreme species turnover accompany declining soil fertility along a long-term chronosequence in a biodiversity hotspot. Journal of Ecology.

  • Categories    

    This data contains soil physico-chemical characteristics collected at the Great Western Woodlands site in 2012 and 2014.