solar radiation
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
-
<p>Quantifying the impact of climate change on actual and potential evapotranspiration (AET and PET) is essential for water security, agriculture production and environmental management. AET and PET are strongly influenced by local factors such as topography, land cover and soil moisture, which limits the usability of global climate models for their projections. Here, we dynamically downscale Coupled Model Intercomparison Project Phase 6 (CMIP6) models using Conformal Cubic Atmospheric Model (CCAM) to a 10km resolution over Australia and derive AET and PET at a daily time step using the Morton method and project future changes under SSP126, 245 and 370. Three AET / PET datasets are provided by Queensland Government Climate Projection Service team, which include Areal AET, Wet Environment Areal PET and Point PET. These datasets are computed offline based on Morton’s Complementary Relationship Areal Evapotranspiration (CRAE) model.</p> <p>In addition, we also provide datasets for Pan Evaporation (linear regression model), Short and Tall Crop Reference Evapotranspiration (Penman–Monteith model) and Shallow Lake Evaporation (Morton’s Complementary Relationship Wet-surface Evaporation CRWE model). They have used dynamically downscaled CMIP6 models datasets as input.</p>
-
<br>The Brigalow Catchment Study (BCS) in the brigalow (<em>Acacia harpophylla</em>) bioregion of central Queensland, commenced in 1965 with a pre-clearing calibration phase of 17 years to define the hydrology of 3 adjoining catchments (12-17 ha). Following clearing of 2 catchments in 1982, 3 land uses, brigalow forest, cropping, and grazed pasture, were established and monitored for water balance, resource condition and productivity. This trial has provided data and scientific understanding on the interaction of climate, soils, water, land use and management for resource condition across the three major land uses. Soil samples from the trial site have been used in calibration of the Roth C model for use in estimating Australia’s national greenhouse gas inventory.</br>
-
Dynamically downscaled high-resolution (~10 km spatial resolution) climate change projection data for Queensland. Downscaling was completed using CSIRO Conformal Cubic Atmospheric Model (CCAM) for two RCPs (RCP4.5 and RCP8.5) from 11 CMIP5 global coarse resolution models for period 1980-2099. The Queensland Future Climate Dashboard (www.longpaddock.qld.gov.au/qld-future-climate/ ) provides easy access to climate projection for Queensland. The dashboard allows users to explore, visualize and download the latest high-resolution climate modelling data for specific regions, catchments, disaster areas, local government areas and grid squares. Underlying data is provided via TERN for easy access for each of 11 downscaled models. The Queensland Future Climate Dataset provides high resolution data for over 30 different metrics grouped in six climate themes: (i) Mean Climate; (ii) Heatwaves; (iii) Extreme Temperature Indices; (iv) Extreme Precipitation Indices; (v) Droughts; and (vi) Floods. In addition selected variables at daily and monthly intervals are also available.
TERN Geospatial Catalogue